Difference between revisions of "Power Mean Inequality"
Durianaops (talk | contribs) (→Description) |
Durianaops (talk | contribs) (→Inequality) |
||
Line 2: | Line 2: | ||
== Inequality == | == Inequality == | ||
− | For <math>n</math> positive real numbers <math>a_i</math> and <math>n</math> positive real weights <math>w_i</math> with sum <math>\sum_{i=1}^n w_i=1</math>, the power mean | + | For <math>n</math> positive real numbers <math>a_i</math> and <math>n</math> positive real weights <math>w_i</math> with sum <math>\sum_{i=1}^n w_i=1</math>, the power mean with exponent <math>t</math>, where <math>t\in\mathbb{R}</math>, is defined by |
<cmath> | <cmath> | ||
M(t)= | M(t)= |
Revision as of 02:55, 2 August 2020
The Power Mean Inequality is a generalized form of the multi-variable Arithmetic Mean-Geometric Mean Inequality.
Inequality
For positive real numbers and positive real weights with sum , the power mean with exponent , where , is defined by
The Power Mean Inequality states that for all real numbers and , if . In particular, for nonzero and , and equal weights (i.e. ), if , then
Considering the limiting behavior, we also have , and .
The Power Mean Inequality follows from Jensen's Inequality.
Proof
We prove by cases:
1. for
2. for with
Case 1:
Note that As is concave, by Jensen's Inequality, the last inequality is true, proving . By replacing by , the last inequality implies as the inequality signs are flipped after multiplication by .
Case 2:
For , As the function is concave for all , by Jensen's Inequality, For , becomes convex as , so the inequality sign when applying Jensen's Inequalitythe inequality is flipped. Thus, the inequality sign in is flipped, but as , is a decreasing function, so the inequality sign is flipped again after applying , resulting in as desired.