Difference between revisions of "1987 AIME Problems/Problem 7"

m (See also)
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
+
Let <math>\displaystyle [r,s]</math> denote the least common multiple of positive integers <math>\displaystyle r</math> and <math>\displaystyle s</math>.  Find the number of ordered triples <math>\displaystyle (a,b,c)</math> of positive integers for which <math>\displaystyle [a,b] = 1000</math>, <math>\displaystyle [b,c] = 2000</math>, and <math>\displaystyle [c,a] = 2000</math>.
 
== Solution ==
 
== Solution ==
  

Revision as of 23:49, 10 February 2007

Problem

Let $\displaystyle [r,s]$ denote the least common multiple of positive integers $\displaystyle r$ and $\displaystyle s$. Find the number of ordered triples $\displaystyle (a,b,c)$ of positive integers for which $\displaystyle [a,b] = 1000$, $\displaystyle [b,c] = 2000$, and $\displaystyle [c,a] = 2000$.

Solution

See also

1987 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions