Difference between revisions of "Reducible fraction"

(add a tiny bit)
m (whoops)
Line 1: Line 1:
A '''reducible fraction''' is a [[ratio]] of two [[integer]]s which have a common [[divisor]].  Thus, for example, <math>\frac{10}{14}</math> is reducible because 2 divides both 10 and 14. On the other hand, <math>\frac{5}{6}</math> is [[irreducible fraction|irreducible]].
+
A '''reducible fraction''' is a [[ratio]] of two [[integer]]s which have a common [[divisor]].  Thus, for example, <math>\frac{10}{14}</math> is reducible because 2 divides both 10 and 14. On the other hand, <math>\frac{5}{7}</math> is [[irreducible fraction|irreducible]].
  
 
A fraction is no longer reducible when the [[numerator]] and the [[denominator]] are [[relatively prime]].  
 
A fraction is no longer reducible when the [[numerator]] and the [[denominator]] are [[relatively prime]].  

Revision as of 21:02, 13 February 2007

A reducible fraction is a ratio of two integers which have a common divisor. Thus, for example, $\frac{10}{14}$ is reducible because 2 divides both 10 and 14. On the other hand, $\frac{5}{7}$ is irreducible.

A fraction is no longer reducible when the numerator and the denominator are relatively prime.

See also

This article is a stub. Help us out by expanding it.