Difference between revisions of "2013 AMC 10A Problems/Problem 1"

m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
A taxi ride costs $1.50 plus $0.25 per mile traveled.  How much does a 5-mile taxi ride cost?
+
A taxi ride costs <math> $1.50</math> plus <math>$0.25</math> per mile traveled.  How much does a <math>5</math>-mile taxi ride cost?
  
 
<math> \textbf{(A)}\ 2.25 \qquad\textbf{(B)}\ 2.50  \qquad\textbf{(C)}\ 2.75 \qquad\textbf{(D)}\ 3.00 \qquad\textbf{(E)}\ 3.75 </math>
 
<math> \textbf{(A)}\ 2.25 \qquad\textbf{(B)}\ 2.50  \qquad\textbf{(C)}\ 2.75 \qquad\textbf{(D)}\ 3.00 \qquad\textbf{(E)}\ 3.75 </math>
 
 
  
 
==Solution==
 
==Solution==

Revision as of 14:19, 19 August 2020

Problem

A taxi ride costs $$1.50$ plus $$0.25$ per mile traveled. How much does a $5$-mile taxi ride cost?

$\textbf{(A)}\ 2.25 \qquad\textbf{(B)}\ 2.50  \qquad\textbf{(C)}\ 2.75 \qquad\textbf{(D)}\ 3.00 \qquad\textbf{(E)}\ 3.75$

Solution

There are five miles which need to be traveled. The cost of these five miles is $(0.25\cdot5) = 1.25$. Adding this to $1.50$, we get $\boxed{\textbf{(C) }2.75}$


See Also

2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png