Difference between revisions of "User:Jonjoseph"
Line 181: | Line 181: | ||
label("$\tan \theta$", (1,.375), E); | label("$\tan \theta$", (1,.375), E); | ||
label("$\sec\theta$", (.5, .375), NW); | label("$\sec\theta$", (.5, .375), NW); | ||
+ | </asy> | ||
+ | |||
+ | <asy> | ||
+ | size(200); | ||
+ | import three; | ||
+ | currentprojection = orthographic(3.1, 2.1, 1); | ||
+ | triple A, B, X, Y, Z; | ||
+ | A = (1, 1, 0); | ||
+ | B = (0, 0, 1); | ||
+ | O = (0,0,0); | ||
+ | X = (1, 0, 0); | ||
+ | Y = (0, 1, 0); | ||
+ | Z = (0, 0, 1); | ||
+ | |||
+ | real big = 2; | ||
+ | |||
+ | draw(surface(-(big - 0.1)*X - (big - 0.1)*Y -- -(big - 0.1)*X + (big - 0.1)*Y -- (big - 0.1)*X + (big - 0.1)*Y -- (big - 0.1)*X - (big - 0.1)*Y--cycle), rgb(226, 253, 255), nolight); | ||
+ | draw(O--big*X, Arrow3(size = 0.2cm)); | ||
+ | draw(O-- -big*X, Arrow3(size = 0.2cm)); | ||
+ | draw(O-- big*Y, Arrow3(size = 0.2cm)); | ||
+ | draw(O-- -big*Y, Arrow3(size = 0.2cm)); | ||
+ | draw(O-- big*Z, Arrow3(size = 0.2cm)); | ||
+ | draw(O-- -big*Z, Arrow3(size = 0.2cm)); | ||
+ | |||
+ | label("$x$", big*X, NW); | ||
+ | label("$y$", big*Y, N); | ||
+ | label("$z$", big*Z, W); | ||
+ | |||
+ | draw(A--B, red, Arrow3(size = 0.3cm)); | ||
+ | |||
+ | dot("$A$", A, S); | ||
+ | dot("$B$", B, E); | ||
</asy> | </asy> |
Revision as of 10:49, 12 September 2020
Given a circle with center and a point that lies outside the circle, bisect circle with a second circle centered at .
Problem from class: