Difference between revisions of "2020 IMO Problems/Problem 2"
(→Solution) |
m (→Solution) |
||
Line 6: | Line 6: | ||
== Solution == | == Solution == | ||
− | Using Weighted AM -GM we get | + | Using Weighted AM-GM we get |
<cmath>\frac{a. a +b. b +c. c +d. d}{a+b+c+d} \ge (a^a b^b c^c d^d)^{\frac{1}{a+b+c+d}}</cmath> | <cmath>\frac{a. a +b. b +c. c +d. d}{a+b+c+d} \ge (a^a b^b c^c d^d)^{\frac{1}{a+b+c+d}}</cmath> | ||
Line 14: | Line 14: | ||
So, <cmath>(a+2b+3c+4d) a^ab^bc^c \le (a+2b+3c+4d)(a^2+b^2+c^2+d^2) </cmath> | So, <cmath>(a+2b+3c+4d) a^ab^bc^c \le (a+2b+3c+4d)(a^2+b^2+c^2+d^2) </cmath> | ||
− | Now notice that | + | Now notice that |
− | <cmath>a+2b+3c+4d \text{ will be less then the following expression (and reason is written | + | <cmath>a+2b+3c+4d \text{ will be less then the following expression (and reason is written to the right)} </cmath> |
− | <cmath>a+2b+3c+3d ,\text{as} d\le b</cmath> | + | <cmath>a+2b+3c+3d,\text{as } d\le b</cmath> |
− | <cmath>3a+3b+3c+d, \text{as} d\le a</cmath> | + | <cmath>3a+3b+3c+d, \text{as } d\le a</cmath> |
− | <cmath>3a+b+3c+3d , \text{as} b+d\le 2a </cmath> | + | <cmath>3a+b+3c+3d, \text{as } b+d\le 2a </cmath> |
− | <cmath>3a +3b +c +3d , \text{as} 2c+d \le 2a+b </cmath> | + | <cmath>3a+3b+c+3d, \text{as } 2c+d \le 2a+b </cmath> |
− | So, | + | So, we get |
<cmath>(a+2b+3c+4d)(a^2+b^2+c^2+d^2) </cmath> | <cmath>(a+2b+3c+4d)(a^2+b^2+c^2+d^2) </cmath> | ||
<cmath>= a^2(a+2b+3c+4d)+b^2(a+2b+3c+4d)+c^2 (a+2b+3c+4d) +d^2 (a+2b+3c+4d) </cmath> | <cmath>= a^2(a+2b+3c+4d)+b^2(a+2b+3c+4d)+c^2 (a+2b+3c+4d) +d^2 (a+2b+3c+4d) </cmath> | ||
Line 30: | Line 30: | ||
<cmath>=(a+b+c+d)^3 =1</cmath> | <cmath>=(a+b+c+d)^3 =1</cmath> | ||
− | Now , | + | Now, for equality we must have <math>a=b=c=d=\frac{1}{4}</math> |
− | + | In that case we get <cmath>(a+2b+3c+4d) a^ab^bc^c \le (a+2b+3c+4d)(a^2+b^2+c^2+d^2) =\frac{5}{8} <1</cmath> | |
~ftheftics | ~ftheftics |
Revision as of 19:33, 27 September 2020
Problem 2. The real numbers are such that and . Prove that
Solution
Using Weighted AM-GM we get
So,
Now notice that
So, we get
Now, for equality we must have
In that case we get
~ftheftics