|
|
Line 1: |
Line 1: |
− | ==Problem 3==
| |
− | Which of the following is the correct order of the fractions <math>\frac{15}{11},\frac{19}{15},</math> and <math>\frac{17}{13},</math> from least to greatest?
| |
| | | |
− | <math>\textbf{(A) }\frac{15}{11}< \frac{17}{13}< \frac{19}{15} \qquad\textbf{(B) }\frac{15}{11}< \frac{19}{15}<\frac{17}{13} \qquad\textbf{(C) }\frac{17}{13}<\frac{19}{15}<\frac{15}{11} \qquad\textbf{(D) } \frac{19}{15}<\frac{15}{11}<\frac{17}{13} \qquad\textbf{(E) } \frac{19}{15}<\frac{17}{13}<\frac{15}{11}</math>
| |
− | ==Solution 1==
| |
− | Each one is in the form <math>\frac{x+4}{x}</math> so we are really comparing <math>\frac{4}{11}, \frac{4}{15},</math> and <math>\frac{4}{13}</math> where you can see <math>\frac{4}{11}>\frac{4}{13}>\frac{4}{15}</math> so the answer is <math>\boxed{\textbf{(E)}\frac{19}{15}<\frac{17}{13}<\frac{15}{11}}</math>.
| |
− |
| |
− | ==Solution 2==
| |
− | We take a common denominator:
| |
− | <cmath>\frac{15}{11},\frac{19}{15}, \frac{17}{13} = \frac{15\cdot 15 \cdot 13}{11\cdot 15 \cdot 13},\frac{19 \cdot 11 \cdot 13}{15\cdot 11 \cdot 13}, \frac{17 \cdot 11 \cdot 15}{13\cdot 11 \cdot 15} = \frac{2925}{2145},\frac{2717}{2145},\frac{2805}{2145}.</cmath>
| |
− |
| |
− | Since <math>2717<2805<2925</math> it follows that the answer is <math>\boxed{\textbf{(E)}\frac{19}{15}<\frac{17}{13}<\frac{15}{11}}</math>.
| |
− |
| |
− | -xMidnightFirex
| |
− |
| |
− | ~ dolphin7 - I took your idea and made it an explanation.
| |
− |
| |
− | ==Solution 3==
| |
− | When <math>\frac{x}{y}>1</math> and <math>z>0</math>, <math>\frac{x+z}{y+z}<\frac{x}{y}</math>. Hence, the answer is <math>\boxed{\textbf{(E)}\frac{19}{15}<\frac{17}{13}<\frac{15}{11}}</math>.
| |
− | ~ ryjs
| |
− |
| |
− | This is also similar to Problem 20 on the AMC 2012.
| |
− |
| |
− | ==Solution 4(probably won't use this solution)==
| |
− | We use our insane mental calculator to find out that <math>\frac{15}{11} \approx 1.36</math>, <math>\frac{19}{15} \approx 1.27</math>, and <math>\frac{17}{13} \approx 1.31</math>. Thus, our answer is <math>\boxed{\textbf{(E)}\frac{19}{15}<\frac{17}{13}<\frac{15}{11}}</math>.
| |
− |
| |
− | ~~ by an insane math guy
| |
− |
| |
− | ==See Also==
| |
− | {{AMC8 box|year=2019|num-b=2|num-a=4}}
| |
− |
| |
− | {{MAA Notice}} The butterfly method is a method when you multiply the denominator of the second fraction and multiply it by the numerator from the first fraction.
| |