Difference between revisions of "2006 AMC 8 Problems/Problem 21"
m (→Solution) |
Mathgl2018 (talk | contribs) (→Super Easy Solution) |
||
Line 4: | Line 4: | ||
<math> \textbf{(A)}\ 0.25\qquad\textbf{(B)}\ 0.5\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 1.25\qquad\textbf{(E)}\ 2.5 </math> | <math> \textbf{(A)}\ 0.25\qquad\textbf{(B)}\ 0.5\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 1.25\qquad\textbf{(E)}\ 2.5 </math> | ||
− | ==Super | + | ==Super Hard Solution== |
The water level will rise <math>1</math>cm for every <math>100 \cdot 40 = 4000\text{cm}^2</math>. Since <math>1000</math> is <math>\frac{1}{4}</math> of <math>4000</math>, the water will rise <math>\frac{1}{4}\cdot1 = \boxed{\textbf{(A)}\ 0.25}</math> | The water level will rise <math>1</math>cm for every <math>100 \cdot 40 = 4000\text{cm}^2</math>. Since <math>1000</math> is <math>\frac{1}{4}</math> of <math>4000</math>, the water will rise <math>\frac{1}{4}\cdot1 = \boxed{\textbf{(A)}\ 0.25}</math> | ||
Revision as of 14:52, 19 October 2020
Problem
An aquarium has a rectangular base that measures cm by cm and has a height of cm. The aquarium is filled with water to a depth of cm. A rock with volume is then placed in the aquarium and completely submerged. By how many centimeters does the water level rise?
Super Hard Solution
The water level will rise cm for every . Since is of , the water will rise
See Also
2006 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.