Difference between revisions of "1967 IMO Problems/Problem 5"

Line 2: Line 2:
  
 
==Solution==
 
==Solution==
It can be found here [https://artofproblemsolving.com/community/c6h21159p137339]
+
<math>c_n</math> must be zero for all odd <math>n</math>.
 +
 
 +
Proof:
 +
WLOG suppose that <math>a_1 \geq a_2 \geq ... \geq a_8</math>. If <math>a_1+a_8 > 0</math> then for sufficiently high odd <math>n</math>, <math>c_n</math> will be dominated by <math>a_1</math> alone i.e. it will always be positive. Similarly if <math>a_1+a_8 < 0</math>; hence <math>a_1=-a_8</math>. Now for odd <math>n</math> these terms cancel, so we can repeat for the remaining values. Now all the terms cancel for all odd <math>n</math>. Since some <math>a_i</math> is nonzero <math>c_n > 0</math> for even <math>n</math>.
 +
 
 +
The above solution was written by Fiachra and can be found here: [https://aops.com/community/p138611]
 +
 
  
 
----
 
----

Revision as of 12:14, 29 January 2021

Let $a_1,\ldots,a_8$ be reals, not all equal to zero. Let \[c_n = \sum^8_{k=1} a^n_k\] for $n=1,2,3,\ldots$. Given that among the numbers of the sequence $(c_n)$, there are infinitely many equal to zero, determine all the values of $n$ for which $c_n = 0.$

Solution

$c_n$ must be zero for all odd $n$.

Proof: WLOG suppose that $a_1 \geq a_2 \geq ... \geq a_8$. If $a_1+a_8 > 0$ then for sufficiently high odd $n$, $c_n$ will be dominated by $a_1$ alone i.e. it will always be positive. Similarly if $a_1+a_8 < 0$; hence $a_1=-a_8$. Now for odd $n$ these terms cancel, so we can repeat for the remaining values. Now all the terms cancel for all odd $n$. Since some $a_i$ is nonzero $c_n > 0$ for even $n$.

The above solution was written by Fiachra and can be found here: [1]



$\textbf{Note:}\hspace{4000pt}$ Problem 5 on this (https://artofproblemsolving.com/wiki/index.php/1967_IMO_Problems) page is equivalent to this since the only difference is that they are phrased differently.

See Also

1967 IMO (Problems) • Resources
Preceded by
Problem 4
1 2 3 4 5 6 Followed by
Problem 6
All IMO Problems and Solutions