Difference between revisions of "2021 AMC 10B Problems/Problem 17"
(→Solution) |
|||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
− | Oscar must be given 3 and 1, so we rule out <math>\textbf{(A) \ }</math> and <math>\textbf{(B) \ }</math>. If Tyrone had card 7, then he would also have card 9, and then Kim must have 10 and 7 so we rule out <math>\textbf{(E) \ }</math>. If Aditi was given card 4, then she would have card 3, which Oscar already had. So the answer is <math>\boxed{ | + | Oscar must be given 3 and 1, so we rule out <math>\textbf{(A) \ }</math> and <math>\textbf{(B) \ }</math>. If Tyrone had card 7, then he would also have card 9, and then Kim must have 10 and 7 so we rule out <math>\textbf{(E) \ }</math>. If Aditi was given card 4, then she would have card 3, which Oscar already had. So the answer is <math>\boxed{ \textbf{(C) \ }\text{Ravon was given card 4.}}</math> |
+ | |||
+ | ~smarty101 and smartypantsno_3 |
Revision as of 17:56, 11 February 2021
Problem
Ravon, Oscar, Aditi, Tyrone, and Kim play a card game. Each person is given 2 cards out of a set of 10 cards numbered The score of a player is the sum of the numbers of their cards. The scores of the players are as follows: Ravon--11, Oscar--4, Aditi--7, Tyrone--16, Kim--17. Which of the following statements is true?
Solution
Oscar must be given 3 and 1, so we rule out and . If Tyrone had card 7, then he would also have card 9, and then Kim must have 10 and 7 so we rule out . If Aditi was given card 4, then she would have card 3, which Oscar already had. So the answer is
~smarty101 and smartypantsno_3