Difference between revisions of "User:Raagavbala"

Line 24: Line 24:
  
 
<cmath>500000000000000000000000000000000000000000000000000500000000000000000000000000000000000000000000000000</cmath>
 
<cmath>500000000000000000000000000000000000000000000000000500000000000000000000000000000000000000000000000000</cmath>
 +
 +
Ok, so this is definitely going to <math>\infty.</math> So we know the equation for this is <math>\frac{n(n+1)}{2}</math> so,
 +
 +
<cmath>\frac{\infty(\infty+1)}{2} = \infty</cmath>.
 +
 +
So we get <math>\infty</math>!

Revision as of 14:30, 25 March 2021

Hi I am raagavbala! Congratulations! You reached this page!

Let's solve this problem:

\[1 + 2 + 3 + 4 + 5 + \dots~?\]

Let's see how big this number gets!

\[1 + 2 + 3 + 4 + 5 + \dots + 10~?\]

\[55\]

\[1 + 2 + 3 + 4 + 5 + \dots + 100~?\]

\[5050\]

\[1 + 2 + 3 + 4 + 5 + \dots + 1000~?\]

\[500,500\]

\[1 + 2 + 3 + 4 + 5 + \dots + 1000000000000000000000000000000000000000000000000000?\]

\[500000000000000000000000000000000000000000000000000500000000000000000000000000000000000000000000000000\]

Ok, so this is definitely going to $\infty.$ So we know the equation for this is $\frac{n(n+1)}{2}$ so,

\[\frac{\infty(\infty+1)}{2} = \infty\].

So we get $\infty$!