Difference between revisions of "User:Raagavbala"

Line 29: Line 29:
 
<cmath>\frac{\infty(\infty+1)}{2} = \infty</cmath>.  
 
<cmath>\frac{\infty(\infty+1)}{2} = \infty</cmath>.  
  
So we get <math>\infty</math>!
+
So we get <math>\infty</math>! Wasn't that obvious? :P

Revision as of 14:31, 25 March 2021

Hi I am raagavbala! Congratulations! You reached this page!

Let's solve this problem:

\[1 + 2 + 3 + 4 + 5 + \dots~?\]

Let's see how big this number gets!

\[1 + 2 + 3 + 4 + 5 + \dots + 10~?\]

\[55\]

\[1 + 2 + 3 + 4 + 5 + \dots + 100~?\]

\[5050\]

\[1 + 2 + 3 + 4 + 5 + \dots + 1000~?\]

\[500,500\]

\[1 + 2 + 3 + 4 + 5 + \dots + 1000000000000000000000000000000000000000000000000000?\]

\[500000000000000000000000000000000000000000000000000500000000000000000000000000000000000000000000000000\]

Ok, so this is definitely going to $\infty.$ So we know the equation for this is $\frac{n(n+1)}{2}$ so,

\[\frac{\infty(\infty+1)}{2} = \infty\].

So we get $\infty$! Wasn't that obvious? :P