Difference between revisions of "2021 USAJMO Problems/Problem 6"

Line 1: Line 1:
 
Let <math>n \geq 4</math> be an integer. Find all positive real solutions to the following system of <math>2n</math> equations:
 
Let <math>n \geq 4</math> be an integer. Find all positive real solutions to the following system of <math>2n</math> equations:
  
<math>\begin{align*}
+
\begin{align*}
 
a_{1} &=\frac{1}{a_{2 n}}+\frac{1}{a_{2}}, & a_{2}&=a_{1}+a_{3}, \\
 
a_{1} &=\frac{1}{a_{2 n}}+\frac{1}{a_{2}}, & a_{2}&=a_{1}+a_{3}, \\
 
a_{3}&=\frac{1}{a_{2}}+\frac{1}{a_{4}}, & a_{4}&=a_{3}+a_{5}, \\
 
a_{3}&=\frac{1}{a_{2}}+\frac{1}{a_{4}}, & a_{4}&=a_{3}+a_{5}, \\
Line 8: Line 8:
 
a_{2 n-1}&=\frac{1}{a_{2 n-2}}+\frac{1}{a_{2 n}}, & a_{2 n}&=a_{2 n-1}+a_{1}
 
a_{2 n-1}&=\frac{1}{a_{2 n-2}}+\frac{1}{a_{2 n}}, & a_{2 n}&=a_{2 n-1}+a_{1}
 
\end{align*}
 
\end{align*}
</math>
 

Revision as of 16:08, 15 April 2021

Let $n \geq 4$ be an integer. Find all positive real solutions to the following system of $2n$ equations:

\begin{align*} a_{1} &=\frac{1}{a_{2 n}}+\frac{1}{a_{2}}, & a_{2}&=a_{1}+a_{3}, \\ a_{3}&=\frac{1}{a_{2}}+\frac{1}{a_{4}}, & a_{4}&=a_{3}+a_{5}, \\ a_{5}&=\frac{1}{a_{4}}+\frac{1}{a_{6}}, & a_{6}&=a_{5}+a_{7} \\ &\vdots & &\vdots \\ a_{2 n-1}&=\frac{1}{a_{2 n-2}}+\frac{1}{a_{2 n}}, & a_{2 n}&=a_{2 n-1}+a_{1} \end{align*}