Difference between revisions of "2008 AMC 10A Problems/Problem 20"
Cocohearts (talk | contribs) m (→Solution) |
Mhendrickson (talk | contribs) (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | [[Trapezoid]] <math>ABCD</math> has bases <math>\overline{AB}</math> and <math>\overline{CD}</math> and diagonals intersecting at <math>K</math> | + | [[Trapezoid]] <math>ABCD</math> has bases <math>\overline{AB}</math> and <math>\overline{CD}</math> and diagonals intersecting at <math>K.</math> Suppose that <math>AB = 9</math>, <math>DC = 12</math>, and the area of <math>\triangle AKD</math> is <math>24</math>. What is the area of trapezoid <math>ABCD</math>? |
<math>\mathrm{(A)}\ 92\qquad\mathrm{(B)}\ 94\qquad\mathrm{(C)}\ 96\qquad\mathrm{(D)}\ 98 \qquad\mathrm{(E)}\ 100</math> | <math>\mathrm{(A)}\ 92\qquad\mathrm{(B)}\ 94\qquad\mathrm{(C)}\ 96\qquad\mathrm{(D)}\ 98 \qquad\mathrm{(E)}\ 100</math> |
Revision as of 21:47, 20 April 2021
Problem
Trapezoid has bases and and diagonals intersecting at Suppose that , , and the area of is . What is the area of trapezoid ?
Solution
Since it follows that . Thus .
We now introduce the concept of area ratios: given two triangles that share the same height, the ratio of the areas is equal to the ratio of their bases. Since share a common altitude to , it follows that (we let denote the area of the triangle) , so . Similarly, we find and .
Therefore, the area of .
See also
2008 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.