Difference between revisions of "2008 AMC 10A Problems/Problem 10"
(→Solution 1) |
(→Solution 1) |
||
Line 5: | Line 5: | ||
==Solution 1== | ==Solution 1== | ||
− | Since the area of the large square is <math>16</math>, the side length equals <math>4</math>. If all sides are bisected, the resulting square has side length <math>2\sqrt{2}</math> thus making the area <math>8</math>. If we repeat this process again, we notice that the area is just half that of the previous square, so the area of <math>S_{3} = 4 \longrightarrow \fbox{E}</math> | + | Since the area of the large square is <math>16</math>, the side length equals <math>4</math>. If all sides are bisected, the resulting square has side length <math>2\sqrt{2}</math>, thus making the area <math>8</math>. If we repeat this process again, we notice that the area is just half that of the previous square, so the area of <math>S_{3} = 4 \longrightarrow \fbox{E}</math> |
==Solution 2== | ==Solution 2== |
Revision as of 16:39, 4 June 2021
Contents
Problem
Each of the sides of a square with area is bisected, and a smaller square is constructed using the bisection points as vertices. The same process is carried out on to construct an even smaller square . What is the area of ?
Solution 1
Since the area of the large square is , the side length equals . If all sides are bisected, the resulting square has side length , thus making the area . If we repeat this process again, we notice that the area is just half that of the previous square, so the area of
Solution 2
Since the length ratio is , then the area ratio is (since the area ratio between two 2-dimensional objects is equal to the side ratio of those objects squared). This means that and .
See also
2008 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.