Difference between revisions of "2016 APMO Problems/Problem 5"

(Solution)
Line 16: Line 16:
  
 
Now comparing, we have <math>a=b</math> as desired. <math>\square</math>
 
Now comparing, we have <math>a=b</math> as desired. <math>\square</math>
 +
 +
This gives us the power to compute <math>f(1)</math>. From <math>P(1,1,1)</math> we get <math>f(f(1)+1)=f(2)</math> and injectivity gives <math>f(1)=1</math>.
  
 
<b>Claim 2:</b> <math>f</math> is surjective.
 
<b>Claim 2:</b> <math>f</math> is surjective.
Line 22: Line 24:
 
<cmath>(z+1)f(2x)=2f(x+xf(z)) \iff \frac{(z+1)f(2x)}{2}=f(x+xf(z))</cmath>
 
<cmath>(z+1)f(2x)=2f(x+xf(z)) \iff \frac{(z+1)f(2x)}{2}=f(x+xf(z))</cmath>
  
This give that <math>\text{Im}(f) \in \left(\frac{f(2x)}{2},\infty\right)</math>
+
This give that <math>\text{Im}(f) \in \left(\frac{f(2x)}{2},\infty\right)</math>.

Revision as of 23:04, 12 July 2021

Problem

Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that \[(z + 1)f(x + y) = f(xf(z) + y) + f(yf(z) + x),\]for all positive real numbers $x, y, z$.

Solution

We claim that $f(x)=x$ is the only solution. It is easy to check that it works. Now, we will break things down in several claims. Let $P(x.y,z)$ be the assertion to the Functional Equation.

Claim 1: $f$ is injective.

Proof: Assume $f(a)=f(b)$ for some $a,b \in \mathbb{R}^+$. Now, from $P(x,y,a)$ and $P(x,y,b)$ we have:


\[(a+1)f(x+y)=f(xf(a)+y)+f(yf(a)+x)\] \[(b+1)f(x+y)=f(xf(b)+y)+f(yf(b)+x)\]

Now comparing, we have $a=b$ as desired. $\square$

This gives us the power to compute $f(1)$. From $P(1,1,1)$ we get $f(f(1)+1)=f(2)$ and injectivity gives $f(1)=1$.

Claim 2: $f$ is surjective.

Proof: $P(x,x,z)$ gives \[(z+1)f(2x)=2f(x+xf(z)) \iff \frac{(z+1)f(2x)}{2}=f(x+xf(z))\]

This give that $\text{Im}(f) \in \left(\frac{f(2x)}{2},\infty\right)$.