Difference between revisions of "2021 Fall AMC 10A Problems/Problem 25"
(→Solution 2.1 (Fastest)) |
(→Solution 2.2 (Derivation-Rotated Conics)) |
||
Line 36: | Line 36: | ||
==Solution 2.2 (Derivation-Rotated Conics)== | ==Solution 2.2 (Derivation-Rotated Conics)== | ||
− | We see that the equation <math>r^2-2rs+s^2+4r = 0</math> is in the form of the general equation of a rotated conic - <math>Ax^2+Bxy+Cy^2+Dx+Ey+F = 0</math>. Because | + | We see that the equation <math>r^2-2rs+s^2+4r = 0</math> is in the form of the general equation of a rotated conic - <math>Ax^2+Bxy+Cy^2+Dx+Ey+F = 0</math>. Because <math>B^2 -4AC = (-2)^2 - 4(1)(1) = 0</math>, this rotated conic is a parabola. |
+ | |||
+ | The definition of a parabola is the locus of all points that are equidistant from a point (focus) and line (directrix). Let the focus and directrix of this particular parabola be <math>(a,b)</math> and <math>y = mx+c</math>. Then we can try to find the general form of a rotated parabola in terms of <math>a, b, m, </math>and<math>c</math>. | ||
+ | |||
+ | The distance between two points <math>(x,y)</math> and <math>(a,b)</math> is <math>\sqrt{(x-a)^2+(y-b)^2}</math>. Therefore this is the distance from any point on the parabola to the focus. | ||
+ | |||
+ | The distance from a point <math>(x,y)</math> to a line <math>y = mx+c \implies mx-y+c = 0</math> is <math>\frac{|mx-y+c|}{\sqrt{m^2+1}}</math>. | ||
+ | |||
+ | We can set these two equal to each other and we get: <cmath>(\sqrt{(x-a)^2+(y-b)^2} = \frac{|mx-y+c|}{\sqrt{m^2+1}}</cmath> | ||
Revision as of 21:58, 22 November 2021
Contents
Problem
A quadratic polynomial with real coefficients and leading coefficient is called if the equation is satisfied by exactly three real numbers. Among all the disrespectful quadratic polynomials, there is a unique such polynomial for which the sum of the roots is maximized. What is ?
Solution 1
Let and be the roots of . Then, . The solutions to is the union of the solutions to and . It follows that one of these two quadratics has one solution (a double root) and the other has two. WLOG, assume that the quadratic with one root is . Then, the discriminant is , so . Thus, , but for to have two solutions, it must be the case that *. It follows that the sum of the roots of is , whose maximum value occurs when . Solving for yields . Therefore, , so .
For to have two solutions, the discriminant must be positive. From here, we get that , so . Hence, is negative, so .
~ Leo.Euler
Solution 2 (Factored form)
The disrespectful function has leading coefficient 1, so it can be written in factored form as . Now the problem states that all must satisfy . Plugging our form in, we get: The roots of this equation are . By the fundamental theorem of algebra, each root must have two roots for a total of four possible values of x yet the problem states that this equation is satisfied by three values of x. Therefore one equation must give a double root. Without loss of generality, let the equation be the equation that produces the double root. Expanding gives . We know that if there is a double root to this equation, the discriminant must be equal to zero, so .
From here two solutions can progress.
Solution 2.1 (Fastest)
We can rewrite as . Let's keep our eyes on the ball; we want to find the disrespectful quadratic that maximizes the sum of the roots, which is . Let this be equal to a new variable, , so that our problem is reduced to maximizing this variable. We can rewrite our equation in terms of m as .
This is a quadratic in m, so we can use the quadratic formula:
It'll be easier to think without the square root, so let : then we can rewrite the equation as . We want to maximize m, so we take the plus value of the right-hand-side of the equation. Then;
To maximize m, we find the vertex of the right-hand side of the equation. The vertex of is the average of the roots of the equation which is . This means that since , . .
Solution 2.2 (Derivation-Rotated Conics)
We see that the equation is in the form of the general equation of a rotated conic - . Because , this rotated conic is a parabola.
The definition of a parabola is the locus of all points that are equidistant from a point (focus) and line (directrix). Let the focus and directrix of this particular parabola be and . Then we can try to find the general form of a rotated parabola in terms of and.
The distance between two points and is . Therefore this is the distance from any point on the parabola to the focus.
The distance from a point to a line is .
We can set these two equal to each other and we get:
Solution in progress
~KingRavi