Difference between revisions of "2021 Fall AMC 10A Problems/Problem 23"

(Problem)
m (Solution)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
First, We can test values that would make <math>f(x)=12</math> true. For this to happen <math>x</math> must have <math>6</math> divisors, which means its prime factorization is in the form <math>pq^2</math> or <math>p^5</math>, where <math>p</math> and <math>q</math> are prime numbers. Listing out values less than <math>50</math> which have these prime factorizations, we find <math>12,20,28,44,18,45,50</math> for <math>pq^2</math>, and just <math>32</math> for <math>p^5</math>. Here <math>12</math> especially catches our eyes, as this means if one of <math>f_i(n)=12</math>, each of <math>f_{i+1}(n), f_{i+2}(n), ...</math> will all be <math>12</math>. This is because <math>f_{i+1}(n)=f(f_i(n))</math> (as given in the problem statement), so were <math>f_i(n)=12</math>, plugging this in we get <math>f_{i+1}(n)=f(12)=12</math>, and thus the pattern repeats. Hence, as long as for a <math>i</math>, such that <math>i\leq 50</math> and <math>f_{i}(n)=12</math>, <math>f_{50}(n)=12</math> must be true, which also immediately makes all our previously listed numbers, where <math>f(x)=12</math>, possible values of <math>n</math>.
+
First, we can test values that would make <math>f(x)=12</math> true. For this to happen <math>x</math> must have <math>6</math> divisors, which means its prime factorization is in the form <math>pq^2</math> or <math>p^5</math>, where <math>p</math> and <math>q</math> are prime numbers. Listing out values less than <math>50</math> which have these prime factorizations, we find <math>12,20,28,44,18,45,50</math> for <math>pq^2</math>, and just <math>32</math> for <math>p^5</math>. Here <math>12</math> especially catches our eyes, as this means if one of <math>f_i(n)=12</math>, each of <math>f_{i+1}(n), f_{i+2}(n), ...</math> will all be <math>12</math>. This is because <math>f_{i+1}(n)=f(f_i(n))</math> (as given in the problem statement), so were <math>f_i(n)=12</math>, plugging this in we get <math>f_{i+1}(n)=f(12)=12</math>, and thus the pattern repeats. Hence, as long as for a <math>i</math>, such that <math>i\leq 50</math> and <math>f_{i}(n)=12</math>, <math>f_{50}(n)=12</math> must be true, which also immediately makes all our previously listed numbers, where <math>f(x)=12</math>, possible values of <math>n</math>.
  
  

Revision as of 22:05, 22 November 2021

Problem

For each positive integer $n$, let $f_1(n)$ be twice the number of positive integer divisors of $n$, and for $j \ge 2$, let $f_j(n) = f_1(f_{j-1}(n))$. For how many values of $n \le 50$ is $f_{50}(n) = 12?$

$\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }9\qquad\textbf{(D) }10\qquad\textbf{(E) }11$

Solution

First, we can test values that would make $f(x)=12$ true. For this to happen $x$ must have $6$ divisors, which means its prime factorization is in the form $pq^2$ or $p^5$, where $p$ and $q$ are prime numbers. Listing out values less than $50$ which have these prime factorizations, we find $12,20,28,44,18,45,50$ for $pq^2$, and just $32$ for $p^5$. Here $12$ especially catches our eyes, as this means if one of $f_i(n)=12$, each of $f_{i+1}(n), f_{i+2}(n), ...$ will all be $12$. This is because $f_{i+1}(n)=f(f_i(n))$ (as given in the problem statement), so were $f_i(n)=12$, plugging this in we get $f_{i+1}(n)=f(12)=12$, and thus the pattern repeats. Hence, as long as for a $i$, such that $i\leq 50$ and $f_{i}(n)=12$, $f_{50}(n)=12$ must be true, which also immediately makes all our previously listed numbers, where $f(x)=12$, possible values of $n$.


We also know that if $f(x)$ were to be any of these numbers, $x$ would satisfy $f_{50}(n)$ as well. Looking through each of the possibilities aside from $12$, we see that $f(x)$ could only possibly be equal to $20$ and $18$, and still have $x$ less than or equal to $50$. This would mean $x$ must have $10$, or $9$ divisors, and testing out, we see that $x$ will then be of the form $p^4q$, or $p^2q^2$. The only two values less than or equal to $50$ would be $48$ and $36$ respectively. From here there are no more possible values, so tallying our possibilities we count$\boxed{D:10}$ values (Namely $12,20,28,44,18,45,50,32,36,48$).

~Ericsz