Difference between revisions of "2021 Fall AMC 10B Problems/Problem 13"

(See Also)
(Solution)
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
By similarity, the height is <math>3+\frac{3\cdot}1\cdot2=9</math> and the base is <math>\frac92\cdot1=4.5</math>.  
+
By similarity, the height is <math>3+\frac31\cdot2=9</math> and the base is <math>\frac92\cdot1=4.5</math>.  
 
Thus the area is <math>\frac{9\cdot4.5}2=20.25=20\frac14</math>, or <math>\boxed{(\textbf{B})}</math>.  
 
Thus the area is <math>\frac{9\cdot4.5}2=20.25=20\frac14</math>, or <math>\boxed{(\textbf{B})}</math>.  
  
 
~Hefei417, or 陆畅 Sunny from China
 
~Hefei417, or 陆畅 Sunny from China
 
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2021 Fall|ab=B|num-a=14|num-b=12}}
 
{{AMC10 box|year=2021 Fall|ab=B|num-a=14|num-b=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 09:05, 23 November 2021

Problem

IDK Don't ask me.


Solution

By similarity, the height is $3+\frac31\cdot2=9$ and the base is $\frac92\cdot1=4.5$. Thus the area is $\frac{9\cdot4.5}2=20.25=20\frac14$, or $\boxed{(\textbf{B})}$.

~Hefei417, or 陆畅 Sunny from China

See Also

2021 Fall AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png