Difference between revisions of "User:Temperal/Introductory Proportion"
m (minor fmt) |
|||
Line 17: | Line 17: | ||
Thus, there is no solution when <math>x=\frac{1}{20}</math><br /> | Thus, there is no solution when <math>x=\frac{1}{20}</math><br /> | ||
If <math>y=\frac{1}{20}</math>, then <br /> | If <math>y=\frac{1}{20}</math>, then <br /> | ||
− | :<math>\frac{x}{20}=\frac{1}{k}</math> | + | :<math>\frac{x}{20}=\frac{1}{k} \Longrightarrow xk=20</math> |
:<math>x=\frac{k}{20}</math> | :<math>x=\frac{k}{20}</math> | ||
− | :<math> | + | :<math>\left(\frac{k}{20}\right)\cdot k=20</math> |
− | |||
:<math>k^2=400</math> | :<math>k^2=400</math> | ||
:<math>k=\pm 20</math><br /> | :<math>k=\pm 20</math><br /> | ||
Thus, the possible values of '''k''' are <math>(20,-20)</math>. | Thus, the possible values of '''k''' are <math>(20,-20)</math>. |
Revision as of 10:03, 23 September 2007
Problem
Suppose is either x or y in the following system: Find the possible values of k.
Solution
If , then
- and
Solving gets us:
Thus, there is no solution when
If , then
Thus, the possible values of k are .