Difference between revisions of "1976 AHSME Problems/Problem 20"
(Created page with "Let <math>a,~b</math>, and <math>x</math> be positive real numbers distinct from one. Then <math>4(\log_ax)^2+3(\log_bx)^2=8(\log_ax)(\log_bx)</math> <math>\textbf{(A) }\text...") |
m (→Solution) |
||
Line 12: | Line 12: | ||
− | Because <math>\ | + | Because <math>\log_{m} n = \dfrac{\log n}{\log m}</math>, <math>4(\log_{a} x)^2+3(\log_{b} x)^2 = </math> <math> \dfrac{4(\log x)^2}{(\log a)^2}+\dfrac{3(\log x)^2}{(\log b)^2} =\dfrac{(\log x)^2(4(\log a)^2+3(\log b)^2)}{(\log a \log b)^2}</math>. |
Revision as of 03:32, 27 November 2021
Let , and be positive real numbers distinct from one. Then
Solution
Because , .