Difference between revisions of "1976 AHSME Problems/Problem 20"
m (→Solution) |
(→Solution) |
||
Line 12: | Line 12: | ||
− | Because <math>\log_{m} n = \dfrac{\log n}{\log m}</math>, <math>4(\log_{a} x)^2+3(\log_{b} x)^2 = </math> <math> \dfrac{4(\log x)^2}{(\log a)^2}+\dfrac{3(\log x)^2}{(\log b)^2} =\dfrac{(\log x)^2(4(\log a)^2+3(\log b)^2)}{(\log a \log b)^2}</math>. | + | Because <math>\log_{m} n = \dfrac{\log n}{\log m}</math>, <math>4(\log_{a} x)^2+3(\log_{b} x)^2 = </math> <math> \dfrac{4(\log x)^2}{(\log a)^2}+\dfrac{3(\log x)^2}{(\log b)^2} = \dfrac{(\log x)^2(4(\log a)^2+3(\log b)^2)}{(\log a \log b)^2}</math>. |
+ | |||
+ | Therefore, | ||
+ | |||
+ | <cmath>\dfrac{(\log x)^2(4(\log a)^2+3(\log b)^2)}{(\log a \log b)^2} = \frac{8(\log x)^2}{\log a \log b}</cmath> | ||
+ | <cmath>\dfrac{4(\log a)^2+3(\log b)^2}{\log a \log b} = 8</cmath> | ||
+ | |||
+ | <cmath>\dfrac{4(\log a)^2}{\log a \log b} + \dfrac{3(\log b)^2}{\log a \log b} = 8</cmath> | ||
+ | |||
+ | <cmath>4 \log_{b} a + 3 \log_{a} b = 8</cmath> | ||
+ | |||
+ | Now let <math>k = \log_{b} a</math>. Our equation becomes | ||
+ | |||
+ | <cmath>4k + \frac{3}{k} = 8</cmath> | ||
+ | <cmath>4k^2 - 8k + 3 = 0</cmath> | ||
+ | <cmath>k = \frac{8 \pm \sqrt{64-4(4)(3)}}{8}</cmath> | ||
+ | <cmath>k = \frac{1}{2}, \frac{3}{2}</cmath> | ||
+ | |||
+ | Therefore, either <math>b = a^2</math> or <math>b = \sqrt[3] {a^2}</math>. Since no option matches both of these solutions, the answer is <math>\boxed{\textbf{(E)}}</math>. | ||
+ | |||
+ | - mako17 |
Latest revision as of 03:43, 27 November 2021
Let , and be positive real numbers distinct from one. Then
Solution
Because , .
Therefore,
Now let . Our equation becomes
Therefore, either or . Since no option matches both of these solutions, the answer is .
- mako17