Difference between revisions of "2021 WSMO Accuracy Round Problems/Problem 3"
(Created page with "==Problem== If <math>f</math> is a monic polynomial of minimal degree with rational coefficients satisfying <math>f\left(3+\sqrt{5}\right)=0</math> and <math>f\left(4-\sqrt{7}...") |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
If <math>3+\sqrt{5}</math> is a root of the polynomial, then <math>3-\sqrt{5}</math> is too. Similarly, if <math>4-\sqrt{7}</math> is a root of the polynomial, then so is <math>4+\sqrt{7}.</math> Thus, <math>f(x)=d(x)\left(x-\left(3+\sqrt{5}\right)\right)\left(x-\left(3-\sqrt{5}\right)\right)\left(x-\left(4-\sqrt{7}\right)\right)\left(x-\left(4+\sqrt{7}\right)\right),</math> for some polynomial <math>d.</math> To minimize the degree of <math>f,</math> we can set the degree of <math>d</math> to 0, which means that <math>d(x)=c.</math> This means that the leading coefficient of <math>f(x)=c.</math> Since <math>f</math> is monic, <math>c=1,</math> which means that <cmath>f=\left(x-\left(3+\sqrt{5}\right)\right)\left(x-\left(3-\sqrt{5}\right)\right)\left(x-\left(4-\sqrt{7}\right)\right)\left(x-\left(4+\sqrt{7}\right)\right)=</cmath><cmath>\left(\left(x-3\right)-\sqrt{5}\right)\left(\left(x-3\right)+\sqrt{5}\right)\left(\left(x-4\right)+\sqrt{7}\right)\left(\left(x-4\right)-\sqrt{7}\right)=</cmath><cmath>\left(\left(x-3\right)^{2}-\left(\sqrt{5}\right)^{2}\right)\left(\left(x-4\right)^{2}-\left(\sqrt{7}\right)^{2}\right)=</cmath><cmath>\left(x^{2}-6x+4\right)\left(x^{2}-8x+9\right)=x^{4}-14x^{3}+61x^{2}-86x+36.</cmath> We conclude that <cmath>|f(1)|=|1-14+61-86+36|=|-2|=\boxed{2}.</cmath> | If <math>3+\sqrt{5}</math> is a root of the polynomial, then <math>3-\sqrt{5}</math> is too. Similarly, if <math>4-\sqrt{7}</math> is a root of the polynomial, then so is <math>4+\sqrt{7}.</math> Thus, <math>f(x)=d(x)\left(x-\left(3+\sqrt{5}\right)\right)\left(x-\left(3-\sqrt{5}\right)\right)\left(x-\left(4-\sqrt{7}\right)\right)\left(x-\left(4+\sqrt{7}\right)\right),</math> for some polynomial <math>d.</math> To minimize the degree of <math>f,</math> we can set the degree of <math>d</math> to 0, which means that <math>d(x)=c.</math> This means that the leading coefficient of <math>f(x)=c.</math> Since <math>f</math> is monic, <math>c=1,</math> which means that <cmath>f=\left(x-\left(3+\sqrt{5}\right)\right)\left(x-\left(3-\sqrt{5}\right)\right)\left(x-\left(4-\sqrt{7}\right)\right)\left(x-\left(4+\sqrt{7}\right)\right)=</cmath><cmath>\left(\left(x-3\right)-\sqrt{5}\right)\left(\left(x-3\right)+\sqrt{5}\right)\left(\left(x-4\right)+\sqrt{7}\right)\left(\left(x-4\right)-\sqrt{7}\right)=</cmath><cmath>\left(\left(x-3\right)^{2}-\left(\sqrt{5}\right)^{2}\right)\left(\left(x-4\right)^{2}-\left(\sqrt{7}\right)^{2}\right)=</cmath><cmath>\left(x^{2}-6x+4\right)\left(x^{2}-8x+9\right)=x^{4}-14x^{3}+61x^{2}-86x+36.</cmath> We conclude that <cmath>|f(1)|=|1-14+61-86+36|=|-2|=\boxed{2}.</cmath> | ||
+ | |||
+ | ~pinkpig |
Latest revision as of 11:29, 23 December 2021
Problem
If is a monic polynomial of minimal degree with rational coefficients satisfying and find the value of .
Solution
If is a root of the polynomial, then is too. Similarly, if is a root of the polynomial, then so is Thus, for some polynomial To minimize the degree of we can set the degree of to 0, which means that This means that the leading coefficient of Since is monic, which means that We conclude that
~pinkpig