Difference between revisions of "2022 USAJMO Problems/Problem 4"
(Created page with "==Problem== Let <math>ABCD</math> be a rhombus, and let <math>K</math> and <math>L</math> be points such that <math>K</math> lies inside the rhombus, <math>L</math> lies outsi...") |
(→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | Let's draw (<math>\ell</math>) perpendicular bisector of <math>\overline{KL}</math>. Let <math>X, Y</math> be intersections of <math>\ell</math> with <math>AC</math> and <math>BD</math>, respectively. <math>KXLY</math> is a kite. Let <math>O</math> mid-point of <math>\overline{KL}</math>. Let <math>M</math> mid-point of <math>\overline{BD}</math> (and also <math>M</math> is mid-point of <math>\overline{AC}</math>). <math>X, O, Y</math> are on the line <math>\ell</math>. | ||
+ | |||
+ | <math>BK=DL</math>, <math>BX=XD</math>, <math>XK=XL</math> and so <math>\triangle BXK \cong \triangle DXL</math> (side-side-side). By spiral similarity, <math>\triangle BXD \sim\triangle KXL</math>. Hence, we get | ||
+ | <cmath> \angle XBD = \angle XDB = \angle XKL = \angle XLK = b .</cmath> | ||
+ | |||
+ | Similarly, <math>AK =CL</math>, <math>YK = YL</math>, <math>YA=YC</math> and so <math>\triangle BXK \cong \triangle DXL</math> (side-side-side). From spiral similarity, <math>\triangle YKL\sim \triangle YAC</math>. Thus, | ||
+ | |||
+ | <cmath> \angle YAC = \angle YCA = \angle YKL = \angle YLK = a .</cmath> | ||
+ | |||
+ | If we can show that <math>a=b</math>, then the kite <math>KXLY</math> will be a rhombus. | ||
+ | |||
+ | By spiral similarities, <math>\dfrac{BX}{BD} = \dfrac{XK}{KL}</math> and <math>\dfrac{YA}{AC} = \dfrac{YK}{KL}</math>. Then, <math>KL = \dfrac{BD \cdot XK}{BX} = \dfrac{AC \cdot YK}{YA}</math>. | ||
+ | |||
+ | <math>\dfrac{XK}{YK} = \dfrac{AC \cdot BX}{AY \cdot BD}</math>. Then, <math>\dfrac{YK}{XK} = \dfrac{(BD/2) \cdot AY}{(AC/2) \cdot BX} = \dfrac{\sin b}{\sin a}</math>. Also, in the right triangles <math>\triangle KXO</math> and <math>\triangle KYO</math>, <math>\dfrac{YK}{XK} = \dfrac{OK/\cos a}{OK/\cos b} = \dfrac{\cos b}{\cos a}</math>. Therefore, | ||
+ | <cmath> \dfrac{\sin b}{\sin a} = \dfrac{\cos b}{\cos a}. </cmath> | ||
+ | |||
+ | <math>\sin a \cos b = \sin b \cos a \implies \sin a \cos b - \sin b \cos a = 0 \implies \sin(a-b) = 0</math> and we get <math>a=b</math>. | ||
+ | |||
+ | (Lokman GÖKÇE) |
Revision as of 05:40, 15 May 2022
Problem
Let be a rhombus, and let and be points such that lies inside the rhombus, lies outside the rhombus, and . Prove that there exist points and on lines and such that is also a rhombus.
Solution
Let's draw () perpendicular bisector of . Let be intersections of with and , respectively. is a kite. Let mid-point of . Let mid-point of (and also is mid-point of ). are on the line .
, , and so (side-side-side). By spiral similarity, . Hence, we get
Similarly, , , and so (side-side-side). From spiral similarity, . Thus,
If we can show that , then the kite will be a rhombus.
By spiral similarities, and . Then, .
. Then, . Also, in the right triangles and , . Therefore,
and we get .
(Lokman GÖKÇE)