Difference between revisions of "1963 IMO Problems/Problem 5"
(→Solution 3) |
|||
Line 2: | Line 2: | ||
Prove that <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}</math>. | Prove that <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}</math>. | ||
− | + | == Solution 1 == | |
− | |||
Let <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=S</math>. We have | Let <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=S</math>. We have | ||
Line 14: | Line 13: | ||
Thus <math>S = 1/2</math>. <math>\blacksquare</math> | Thus <math>S = 1/2</math>. <math>\blacksquare</math> | ||
− | + | == Solution 2 == | |
Let <math>a=\sin{\frac{\pi}{7}}</math> and <math>b=\cos{\frac{\pi}{7}}</math>. From the addition formulae, we have | Let <math>a=\sin{\frac{\pi}{7}}</math> and <math>b=\cos{\frac{\pi}{7}}</math>. From the addition formulae, we have | ||
Line 37: | Line 36: | ||
Clearly <math>b\neq -1</math>, so <math>8b^3-4b^2-4b+1=0</math>. This proves the result. <math>\blacksquare</math> | Clearly <math>b\neq -1</math>, so <math>8b^3-4b^2-4b+1=0</math>. This proves the result. <math>\blacksquare</math> | ||
− | + | == Solution 3 == | |
Let <math>\omega=\mathrm{cis}\left(\frac{\pi}{14}\right)</math>. Thus it suffices to show that <math>\omega+\omega^{-1}-\omega^2-\omega^{-2}+\omega^3+\omega^{-3}=1</math>. Now using the fact that <math>\omega^k=\omega^{14+k}</math> and <math>-\omega^2=\omega^9</math>, this is equivalent to | Let <math>\omega=\mathrm{cis}\left(\frac{\pi}{14}\right)</math>. Thus it suffices to show that <math>\omega+\omega^{-1}-\omega^2-\omega^{-2}+\omega^3+\omega^{-3}=1</math>. Now using the fact that <math>\omega^k=\omega^{14+k}</math> and <math>-\omega^2=\omega^9</math>, this is equivalent to | ||
<cmath>\omega+\omega^3+\omega^5+\omega^7+\omega^9+\omega^{11}+\omega^{13}-\omega^7</cmath> | <cmath>\omega+\omega^3+\omega^5+\omega^7+\omega^9+\omega^{11}+\omega^{13}-\omega^7</cmath> |
Revision as of 04:11, 21 July 2022
Problem
Prove that .
Solution 1
Let . We have
Then, by product-sum formulae, we have
Thus .
Solution 2
Let and . From the addition formulae, we have
From the Trigonometric Identity, , so
We must prove that . It suffices to show that .
Now note that . We can find these in terms of and :
Therefore . Note that this can be factored:
Clearly , so . This proves the result.
Solution 3
Let . Thus it suffices to show that . Now using the fact that and , this is equivalent to But since is a th root of unity, . The answer is then , as desired.
~yofro
See Also
1963 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |