Difference between revisions of "1960 IMO Problems/Problem 4"

(Solution)
(Solution)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
https://youtu.be/M0_UdvxH890 [Video Solution]
+
https://youtu.be/M0_UdvxH890 [Video Solution].
 +
 
 
Let <math>M_a</math>, <math>M_b</math>, and <math>M_c</math> be the midpoints of sides <math>\overline{BC}</math>, <math>\overline{CA}</math>, and <math>\overline{AB}</math>, respectively. Let <math>H_a</math>, <math>H_b</math>, and <math>H_c</math> be the feet of the altitudes from <math>A</math>, <math>B</math>, and <math>C</math> to their opposite sides, respectively. Since <math>\triangle ABC\sim\triangle M_bM_aC</math>, with <math>M_bM_a=\frac12 AB</math>, the distance from <math>M_a</math> to side <math>\overline{AC}</math> is <math>\frac{h_b}{2}</math>.
 
Let <math>M_a</math>, <math>M_b</math>, and <math>M_c</math> be the midpoints of sides <math>\overline{BC}</math>, <math>\overline{CA}</math>, and <math>\overline{AB}</math>, respectively. Let <math>H_a</math>, <math>H_b</math>, and <math>H_c</math> be the feet of the altitudes from <math>A</math>, <math>B</math>, and <math>C</math> to their opposite sides, respectively. Since <math>\triangle ABC\sim\triangle M_bM_aC</math>, with <math>M_bM_a=\frac12 AB</math>, the distance from <math>M_a</math> to side <math>\overline{AC}</math> is <math>\frac{h_b}{2}</math>.
  

Revision as of 03:59, 17 August 2022

Problem

Construct triangle $ABC$, given $h_a$, $h_b$ (the altitudes from $A$ and $B$), and $m_a$, the median from vertex $A$.

Solution

https://youtu.be/M0_UdvxH890 [Video Solution].

Let $M_a$, $M_b$, and $M_c$ be the midpoints of sides $\overline{BC}$, $\overline{CA}$, and $\overline{AB}$, respectively. Let $H_a$, $H_b$, and $H_c$ be the feet of the altitudes from $A$, $B$, and $C$ to their opposite sides, respectively. Since $\triangle ABC\sim\triangle M_bM_aC$, with $M_bM_a=\frac12 AB$, the distance from $M_a$ to side $\overline{AC}$ is $\frac{h_b}{2}$.

Construct $AM_a$ with length $m_a$. Draw a circle centered at $A$ with radius $h_a$. Construct the tangent $l_1$ to this circle through $M_a$. $\overline{BC}$ lies on $l_1$.

Draw a circle centered at $M_a$ with radius $\frac{h_b}{2}$. Construct the tangent $l_2$ to this circle through $A$. $\overline{AC}$ lies on $l_2$. Then $C=l_1\cap l_2$.

Construct the line $l_3$ parallel to $l_2$ so that the distance between $l_2$ and $l_3$ is $h_b$ and $M_a$ lies between these lines. $B$ lies on $l_3$. Then $B=l_1\cap l_3$.

See Also

1960 IMO (Problems)
Preceded by
Problem 3
1 2 3 4 5 6 7 Followed by
Problem 5