Difference between revisions of "2013 JBMO Problems/Problem 1"
(Created page with "==Problem== Find all ordered pairs <math>(a,b)</math> of positive integers for which the numbers <math>\dfrac{a^3b-1}{a+1}</math> and <math>\dfrac{b^3a+1}{b-1}</math> are bot...") |
(→Solution) |
||
Line 12: | Line 12: | ||
<math>\dfrac{a^3b+a}{a+1}</math> = <math>\dfrac{a(a^2b+1)}{a+1}</math> is a positive integer | <math>\dfrac{a^3b+a}{a+1}</math> = <math>\dfrac{a(a^2b+1)}{a+1}</math> is a positive integer | ||
− | <math> | + | <math> \implies (a+1) \mid (a^2b+1)</math> |
− | <math> | + | <math> \implies (a+1) \mid (((a+1) - 1)^2b+1)</math> |
− | <math> | + | <math> \implies (a+1) \mid (b+1)</math> |
Similarly, | Similarly, | ||
Line 22: | Line 22: | ||
<math>\dfrac{b^3a+b}{b-1}</math> = <math>\dfrac{b(b^2a+1)}{b-1}</math> is a positive integer | <math>\dfrac{b^3a+b}{b-1}</math> = <math>\dfrac{b(b^2a+1)}{b-1}</math> is a positive integer | ||
− | <math> | + | <math> \implies (b-1) | (b^2a+1)</math> |
− | <math> | + | <math> \implies (b-1) | (((b-1) + 1)^2a+1)</math> |
− | <math> | + | <math> \implies (b-1) | (a+1)</math> |
Combining above <math>2</math> results we get: | Combining above <math>2</math> results we get: | ||
Line 30: | Line 30: | ||
<math>(b-1) | (b+1)</math> | <math>(b-1) | (b+1)</math> | ||
− | <math> | + | <math>\implies b=2,3 </math> |
<math>Case 1: b=2</math> | <math>Case 1: b=2</math> | ||
− | <math> | + | <math> \implies a+1|3 \implies a=2 </math> which is a valid solution. |
<math>Case 2: b=3</math> | <math>Case 2: b=3</math> | ||
− | <math> | + | <math> \implies a+1|4 \implies a=1,3 </math> which are valid solutions. |
Thus, all solutions are: <math>(2,2), (1,3), (3,3)</math> | Thus, all solutions are: <math>(2,2), (1,3), (3,3)</math> |
Revision as of 14:27, 20 October 2022
Problem
Find all ordered pairs of positive integers for which the numbers and are both positive integers
Solution
Adding to both the given numbers we get:
is also a positive integer so we have:
= is a positive integer
Similarly,
is also a positive integer so we have:
= is a positive integer
Combining above results we get:
which is a valid solution.
which are valid solutions.
Thus, all solutions are: