Difference between revisions of "2022 AMC 10A Problems/Problem 6"

(Solution)
m (Solution 2)
Line 35: Line 35:
  
 
The only answer choice equal to <math>5</math> for <math>a=-1</math> is <math>A</math>, so the answer is <math>\boxed{\textbf{(A) } 3-2a}.</math>
 
The only answer choice equal to <math>5</math> for <math>a=-1</math> is <math>A</math>, so the answer is <math>\boxed{\textbf{(A) } 3-2a}.</math>
 +
 
-MathWizard09
 
-MathWizard09
  

Revision as of 01:48, 12 November 2022

Problem

Which expression is equal to \[\left|a-2-\sqrt{(a-1)^2}\right|\] for $a<0?$

$\textbf{(A) } 3-2a \qquad \textbf{(B) } 1-a \qquad \textbf{(C) } 1 \qquad \textbf{(D) } a+1 \qquad \textbf{(E) } 3$

Solution

We have \begin{align*} \left|a-2-\sqrt{(a-1)^2}\right| &= \left|a-2-|a-1|\right| \\ &=\left|a-2-(-a+1)\right| \\ &=\left|2a-3\right| \\ &=\boxed{\textbf{(A) } 3-2a}. \end{align*} ~MRENTHUSIASM

Solution 2

WLOG, assume $a=-1.$ Then, the given expression simplifies to $5$: \[\left|a-2-\sqrt{(a-1)^2}\right| = \left|-1-2-\sqrt{(-1-1)^2}\right| = \left|-1-2-\sqrt{4}\right| = \left|-1-2-2\right| = 5.\]

Then, we test each of the answer choices to see which one is equal to $5$:

$A:$ $3-2a = 3-2\cdot(-1) = 3+2 = 5.$

$B:$ $1-a = 1-(-1) = 2 \neq 5.$

$C:$ $1 \neq 5.$

$D:$ $a+1 = -1+1 = 0 \neq 5.$

$E:$ $3 \neq 5.$

The only answer choice equal to $5$ for $a=-1$ is $A$, so the answer is $\boxed{\textbf{(A) } 3-2a}.$

-MathWizard09

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png