Difference between revisions of "2022 AMC 12B Problems/Problem 14"
Jamesl123456 (talk | contribs) (→Solution 2) |
Kavya.rajesh (talk | contribs) |
||
Line 26: | Line 26: | ||
~ jamesl123456 | ~ jamesl123456 | ||
+ | |||
+ | ==Solution 3== | ||
+ | |||
+ | We can reflect the figure, but still have the same angle. This problem is the same as having points <math>D(0,0)</math>, <math>E(3,15)</math>, and <math>F(-5,15)</math>, where we're solving for angle FED. We can use the formula tan(a-b) to solve now where a is the x-axis to angle F and b is the x-axis to angle E. tan(a) = slope of line DF = <math>-3</math> and tan(B) = slope of line DE = <math>5</math>. Plugging these values into the tan(a-b) formula, we get <math>(-3-5)/(1+(-3*5))</math> which is <math>\boxed{\textbf{(E)}\ \frac{4}{7}}.</math> | ||
== See Also == | == See Also == | ||
{{AMC12 box|year=2022|ab=B|num-b=13|num-a=15}} | {{AMC12 box|year=2022|ab=B|num-b=13|num-a=15}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 08:06, 19 November 2022
Problem
The graph of intersects the -axis at points and and the -axis at point . What is ?
Solution 1
intersects the -axis at points and . Without loss of generality, let these points be and respectively. Also, the graph intersects the y-axis at point .
Let point denote the origin . Note that triangles and are right.
We have
Alternatively, we can use the Pythagorean Theorem to find that and and then use the area formula for a triangle and the Law of Cosines to find .
Solution 2
Like above, we set to , to , and to , then finding via the Pythagorean Theorem that and . Using the Law of Cosines, we see that Then, we use the identity to get
~ jamesl123456
Solution 3
We can reflect the figure, but still have the same angle. This problem is the same as having points , , and , where we're solving for angle FED. We can use the formula tan(a-b) to solve now where a is the x-axis to angle F and b is the x-axis to angle E. tan(a) = slope of line DF = and tan(B) = slope of line DE = . Plugging these values into the tan(a-b) formula, we get which is
See Also
2022 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.