Difference between revisions of "1963 IMO Problems/Problem 3"

Line 11: Line 11:
 
<math>\textbf{Case 1: Even}</math>
 
<math>\textbf{Case 1: Even}</math>
  
In this case, the side with the topmost points will be <math>p_{\frac{n}{2}+1}p_{\frac{n}{2}+2}</math>. We can multiply the lengths of the sides <math>a_1</math>, <math>a_2</math>, ... <math>a_{\frac{n}{2}}</math> by the sine of the angle they make with the <math>x</math>-axis:
+
In this case, the side with the topmost points will be <math>p_{\frac{n}{2}+1}p_{\frac{n}{2}+2}</math>. To obtain the <math>y</math>-coordinate of this top side, we can multiply the lengths of the sides <math>a_1</math>, <math>a_2</math>, ... <math>a_{\frac{n}{2}}</math> by the sine of the angle they make with the <math>x</math>-axis:
  
<cmath>y\textrm{-coordinate} = \sum_{k = 0}^{\frac{n}{2}}</cmath>
+
<cmath>y\textrm{-coordinate} = \sum_{k = 1}^{\frac{n}{2}}a_n \cdot \sin \frac{2\pi(k-1)}{n}</cmath>
  
 
==Solution 2==
 
==Solution 2==

Revision as of 16:32, 7 December 2022

Problem

In an $n$-gon all of whose interior angles are equal, the lengths of consecutive sides satisfy the relation

$a_1\ge a_2\ge \cdots \ge a_n$.

Prove that $a_1=a_2=\cdots = a_n$.

Solution 1

Let $a_1 = p_1p_2$, $a_2 = p_2p_3$, etc.

Plot the $n$-gon on the cartesian plane such that $p_1p_2$ is on the $x$-axis and the entire shape is above the $x$-axis. There are two cases: the number of sides is even, and the number of sides is odd:

$\textbf{Case 1: Even}$

In this case, the side with the topmost points will be $p_{\frac{n}{2}+1}p_{\frac{n}{2}+2}$. To obtain the $y$-coordinate of this top side, we can multiply the lengths of the sides $a_1$, $a_2$, ... $a_{\frac{n}{2}}$ by the sine of the angle they make with the $x$-axis:

\[y\textrm{-coordinate} = \sum_{k = 1}^{\frac{n}{2}}a_n \cdot \sin \frac{2\pi(k-1)}{n}\]

Solution 2

Define the vector $\vec{v_i}$ to equal $\cos{\left(\frac{2\pi}{n}i\right)}\vec{i}+\sin{\left(\frac{2\pi}{n}i\right)}\vec{j}$. Now rotate and translate the given polygon in the Cartesian Coordinate Plane so that the side with length $a_i$ is parallel to $\vec{v_i}$. We then have that

\[\sum_{i=1}^{n} a_i\vec{v_i}=\vec{0}\Rightarrow \sum_{i=1}^{n} a_i\cos{\left(\frac{2\pi}{n}i\right)} =  \sum_{i=1}^{n} a_i\sin{\left(\frac{2\pi}{n}i\right)} =0\]

But $a_i\geq a_{n-i}$ for all $i\leq \lfloor \frac{n}{2}\rfloor$, so

\[a_i \sin{\left(\frac{2\pi}{n}i\right)} = -a_i\sin{\left(\frac{2\pi}{n}(n-i)\right)} \geq -a_{n-i}\sin{\left(\frac{2\pi}{n}(n-i)\right)}\]

for all $i\leq \lfloor \frac{n}{2}\rfloor$. This shows that $a_i \sin{\left(\frac{2\pi}{n}i\right)}+a_{n-i}\sin{\left(\frac{2\pi}{n}(n-i)\right)}\geq 0$, with equality when $a_i=a_{n-i}$. Therefore

\[\sum_{i=1}^{n}  a_i \sin{\left(\frac{2\pi}{n}i\right)}=\sum_{i=1}^{\lfloor \frac{n}{2}\rfloor} a_i \sin{\left(\frac{2\pi}{n}i\right)}+a_{n-i}\sin{\left(\frac{2\pi}{n}(n-i)\right)} \geq 0\]

There is equality only when $a_i=a_{n-i}$ for all $i$. This implies that $a_1=a_{n-1}$ and $a_2=a_n$, so we have that $a_1=a_2=\cdots =a_n$. $\blacksquare$

See Also

1963 IMO (Problems) • Resources
Preceded by
Problem 2
1 2 3 4 5 6 Followed by
Problem 4
All IMO Problems and Solutions