Difference between revisions of "2006 AMC 8 Problems/Problem 7"

Line 1: Line 1:
== Problem ==
+
== Problem 7 ==
  
Circle <math> X </math> has a radius of <math> \pi </math>. Circle <math> Y </math> has a circumference of <math> 8 \pi </math>. Circle <math> Z </math> has an area of <math> 9 \pi </math>. List the circles in order from smallest to largest radius.  
+
Circle <math> X </math> has a radius of <math> \pi </math>. Circle <math> Y </math> has a circumference of <math> 8 \pi </math>. Circle <math> Z </math> has an area of <math> 9 \pi </math>. List the circles in order from smallest to the largest radius.  
  
 
<math> \textbf{(A)}\ X, Y, Z\qquad\textbf{(B)}\ Z, X, Y\qquad\textbf{(C)}\ Y, X, Z\qquad\textbf{(D)}\ Z, Y, X\qquad\textbf{(E)}\ X, Z, Y </math>
 
<math> \textbf{(A)}\ X, Y, Z\qquad\textbf{(B)}\ Z, X, Y\qquad\textbf{(C)}\ Y, X, Z\qquad\textbf{(D)}\ Z, Y, X\qquad\textbf{(E)}\ X, Z, Y </math>

Revision as of 21:57, 10 January 2023

Problem 7

Circle $X$ has a radius of $\pi$. Circle $Y$ has a circumference of $8 \pi$. Circle $Z$ has an area of $9 \pi$. List the circles in order from smallest to the largest radius.

$\textbf{(A)}\ X, Y, Z\qquad\textbf{(B)}\ Z, X, Y\qquad\textbf{(C)}\ Y, X, Z\qquad\textbf{(D)}\ Z, Y, X\qquad\textbf{(E)}\ X, Z, Y$

Solution

Using the formulas of circles, $C=2 \pi r$ and $A= \pi r^2$, we find that circle $Y$ has a radius of $4$ and circle $Z$ has a radius of $3$. Thus, the order from smallest to largest radius is $\boxed{\textbf{(B)}\ Z, X, Y}$.

See Also

2006 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png