Difference between revisions of "Imaginary unit/Introductory"

(creation)
 
(dollar sign)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Find the sum of <math>i^1+i^2+\ldots+i^{2006}
+
Find the sum of <math>i^1+i^2+\ldots+i^{2006}</math>
 
== Solution ==
 
== Solution ==
Let's begin by computing powers of </math>i<math>.
+
Let's begin by computing powers of <math>i</math>.
#</math>i^1=\sqrt{-1}<math>
+
#<math>i^1=\sqrt{-1}</math>
#</math>i^2=\sqrt{-1}\cdot\sqrt{-1}=-1<math>
+
#<math>i^2=\sqrt{-1}\cdot\sqrt{-1}=-1</math>
#</math>i^3=-1\cdot i=-i<math>
+
#<math>i^3=-1\cdot i=-i</math>
#</math>i^4=-i\cdot i=-i^2=-(-1)=1<math>
+
#<math>i^4=-i\cdot i=-i^2=-(-1)=1</math>
#</math>i^5=1\cdot i=i<math>
+
#<math>i^5=1\cdot i=i</math>
We can now stop because we have come back to our original term. This means that the sequence i, -1, -i, 1 repeats. Note that this sums to 0. That means that all sequences </math>i^1+i^2+\ldots+i^{4k}<math> have a sum of zero (k is a natural number). Since </math>2006=4\cdot501+2<math>, the original series sums to the first two terms of the powers of i, which equals </math>-1+i$.
+
We can now stop because we have come back to our original term. This means that the sequence i, -1, -i, 1 repeats. Note that this sums to 0. That means that all sequences <math>i^1+i^2+\ldots+i^{4k}</math> have a sum of zero (k is a natural number). Since <math>2006=4\cdot501+2</math>, the original series sums to the first two terms of the powers of i, which equals <math>-1+i</math>.

Revision as of 14:38, 26 October 2007

Problem

Find the sum of $i^1+i^2+\ldots+i^{2006}$

Solution

Let's begin by computing powers of $i$.

  1. $i^1=\sqrt{-1}$
  2. $i^2=\sqrt{-1}\cdot\sqrt{-1}=-1$
  3. $i^3=-1\cdot i=-i$
  4. $i^4=-i\cdot i=-i^2=-(-1)=1$
  5. $i^5=1\cdot i=i$

We can now stop because we have come back to our original term. This means that the sequence i, -1, -i, 1 repeats. Note that this sums to 0. That means that all sequences $i^1+i^2+\ldots+i^{4k}$ have a sum of zero (k is a natural number). Since $2006=4\cdot501+2$, the original series sums to the first two terms of the powers of i, which equals $-1+i$.