Difference between revisions of "Imaginary unit"

(source)
(series)
Line 1: Line 1:
The '''imaginary unit''', <math>i=\sqrt{-1}</math>, is the fundamental component of all [[complex numbers]]. In fact, it is a complex number itself. It has a [[magnitude]] of 1, and can be written as <math>1 \mathrm{cis} \left(\frac{\pi}{2}\right)</math>.  
+
The '''imaginary unit''', <math>i=\sqrt{-1}</math>, is the fundamental component of all [[complex numbers]]. In fact, it is a complex number itself. It has a [[magnitude]] of 1, and can be written as <math>1 \mathrm{cis } \left(\frac{\pi}{2}\right)</math>.  
  
 +
==Trigonometric function cis==
 +
{{main|cis}}
 +
The trigonometric function <math>\cis x</math> is also defined as <math>e^{ix}</math> or <math>\sin x+i(\cos x)</math>.
 +
 +
==Series==
 +
When <math>i</math> is used in an exponential series, it repeats at every fifth term:
 +
#<math>i^1=\sqrt{-1}</math>
 +
#<math>i^2=\sqrt{-1}\cdot\sqrt{-1}=-1</math>
 +
#<math>i^3=-1\cdot i=-i</math>
 +
#<math>i^4=-i\cdot i=-i^2=-(-1)=1</math>
 +
#<math>i^5=1\cdot i=i</math>
 +
This has many useful properties.
 
==Problems==
 
==Problems==
 
=== Introductory ===
 
=== Introductory ===
Line 10: Line 22:
 
* [[Complex numbers]]
 
* [[Complex numbers]]
 
* [[Geometry]]
 
* [[Geometry]]
{{stub}}
 
 
[[Category:Constants]]
 
[[Category:Constants]]

Revision as of 13:44, 26 October 2007

The imaginary unit, $i=\sqrt{-1}$, is the fundamental component of all complex numbers. In fact, it is a complex number itself. It has a magnitude of 1, and can be written as $1 \mathrm{cis } \left(\frac{\pi}{2}\right)$.

Trigonometric function cis

Main article: cis

The trigonometric function $\cis x$ (Error compiling LaTeX. Unknown error_msg) is also defined as $e^{ix}$ or $\sin x+i(\cos x)$.

Series

When $i$ is used in an exponential series, it repeats at every fifth term:

  1. $i^1=\sqrt{-1}$
  2. $i^2=\sqrt{-1}\cdot\sqrt{-1}=-1$
  3. $i^3=-1\cdot i=-i$
  4. $i^4=-i\cdot i=-i^2=-(-1)=1$
  5. $i^5=1\cdot i=i$

This has many useful properties.

Problems

Introductory


See also