Difference between revisions of "Ptolemy's theorem"
Mathboy100 (talk | contribs) |
Mathboy100 (talk | contribs) (→2023 AIME I Problem 5) |
||
Line 21: | Line 21: | ||
Square <math>ABCD</math> is inscribed in a circle. Point <math>P</math> is on this circle such that <math>AP \cdot CP = BP \cdot DP</math>. What is the area of the square? | Square <math>ABCD</math> is inscribed in a circle. Point <math>P</math> is on this circle such that <math>AP \cdot CP = BP \cdot DP</math>. What is the area of the square? | ||
− | We may assume that <math>P</math> is between <math>B</math> and <math>C</math>. Let <math>PA = a</math>, <math>PB = b</math>, <math>PC = C</math>, <math>PD = d</math>, and <math>AB = s</math>. We have <math>a^2 + c^2 = AC^2 = 2s^2</math>, because <math>AC</math> is a diagonal. Similarly, <math>b^2 + d^2 = 2s^2</math>. Therefore, <math>(a+c)^2 = a^2 + c^2 + 2ac = 2s^2 + 2(56) = 2s^2 + 112</math>. Similarly, <math>(b+d)^2 = 2s^2 + 180</math>. | + | Solution: We may assume that <math>P</math> is between <math>B</math> and <math>C</math>. Let <math>PA = a</math>, <math>PB = b</math>, <math>PC = C</math>, <math>PD = d</math>, and <math>AB = s</math>. We have <math>a^2 + c^2 = AC^2 = 2s^2</math>, because <math>AC</math> is a diagonal. Similarly, <math>b^2 + d^2 = 2s^2</math>. Therefore, <math>(a+c)^2 = a^2 + c^2 + 2ac = 2s^2 + 2(56) = 2s^2 + 112</math>. Similarly, <math>(b+d)^2 = 2s^2 + 180</math>. |
By Ptolemy's Theorem on <math>PCDA</math>, <math>as + cs = ds\sqrt{2}</math>, and therefore <math>a + c = d\sqrt{2}</math>. By Ptolemy's on <math>PBAD</math>, <math>bs + ds = as\sqrt{2}</math>, and therefore <math>b + d = a\sqrt{2}</math>. By squaring both equations, we obtain | By Ptolemy's Theorem on <math>PCDA</math>, <math>as + cs = ds\sqrt{2}</math>, and therefore <math>a + c = d\sqrt{2}</math>. By Ptolemy's on <math>PBAD</math>, <math>bs + ds = as\sqrt{2}</math>, and therefore <math>b + d = a\sqrt{2}</math>. By squaring both equations, we obtain |
Revision as of 12:59, 8 February 2023
Ptolemy's theorem gives a relationship between the side lengths and the diagonals of a cyclic quadrilateral; it is the equality case of Ptolemy's Inequality. Ptolemy's theorem frequently shows up as an intermediate step in problems involving inscribed figures.
Contents
Statement
Given a cyclic quadrilateral with side lengths and diagonals :
Proof
Given cyclic quadrilateral extend to such that
Since quadrilateral is cyclic, However, is also supplementary to so . Hence, by AA similarity and
Now, note that (subtend the same arc) and so This yields
However, Substituting in our expressions for and Multiplying by yields .
Problems
2023 AIME I Problem 5
Square is inscribed in a circle. Point is on this circle such that . What is the area of the square?
Solution: We may assume that is between and . Let , , , , and . We have , because is a diagonal. Similarly, . Therefore, . Similarly, .
By Ptolemy's Theorem on , , and therefore . By Ptolemy's on , , and therefore . By squaring both equations, we obtain
Thus, , and . Plugging these values into , we obtain , and . Now, we can solve using and (though using and yields the same solution for ).
The answer is .
2004 AMC 10B Problem 24
In triangle we have , , . Point is on the circumscribed circle of the triangle so that bisects angle . What is the value of ?
Solution: Set 's length as . 's length must also be since and intercept arcs of equal length(because ). Using Ptolemy's theorem, . The ratio is
Equilateral Triangle Identity
Let be an equilateral triangle. Let be a point on minor arc of its circumcircle. Prove that .
Solution: Draw , , . By Ptolemy's theorem applied to quadrilateral , we know that . Since , we divide both sides of the last equation by to get the result: .
Regular Heptagon Identity
In a regular heptagon , prove that: .
Solution: Let be the regular heptagon. Consider the quadrilateral . If , , and represent the lengths of the side, the short diagonal, and the long diagonal respectively, then the lengths of the sides of are , , and ; the diagonals of are and , respectively.
Now, Ptolemy's theorem states that , which is equivalent to upon division by .
1991 AIME Problems/Problem 14
A hexagon is inscribed in a circle. Five of the sides have length and the sixth, denoted by , has length . Find the sum of the lengths of the three diagonals that can be drawn from .
Cyclic Hexagon
A hexagon with sides of lengths 2, 2, 7, 7, 11, and 11 is inscribed in a circle. Find the diameter of the circle.
Solution: Consider half of the circle, with the quadrilateral , being the diameter. , , and . Construct diagonals and . Notice that these diagonals form right triangles. You get the following system of equations:
(Ptolemy's theorem)
Solving gives