Difference between revisions of "2023 AIME II Problems/Problem 8"

(Solution 2 (Moduli))
(Solution 2 (Moduli))
Line 44: Line 44:
  
 
<cmath>3z_1^2z_2^2z_3^2</cmath>
 
<cmath>3z_1^2z_2^2z_3^2</cmath>
<cmath> = 3((\cos \frac{6\pi}{7} + \cos \frac{2\pi}{7} + 1)^2 + (\sin \frac{6\pi}{7] + \sin \frac{2\pi}{7})^2)((\cos \frac{12\pi}{7} + \cos \frac{4\pi}{7} + 1)^2 + (\sin \frac{12\pi}{7] + \sin \frac{4\pi}{7})^2)((\cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} + 1)^2 + (\sin \frac{4\pi}{7] + \sin \frac{6\pi}{7})^2)</cmath>
+
<cmath> = 3((\cos \frac{6\pi}{7} + \cos \frac{2\pi}{7} + 1)^2 + (\sin \frac{6\pi}{7] + \sin \frac{2\pi}{7})^2)((\cos \frac{12\pi}{7} + \cos \frac{4\pi}{7} + 1)^2</cmath>
 +
<cmath> + (\sin \frac{12\pi}{7] + \sin \frac{4\pi}{7})^2)((\cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} + 1)^2 + (\sin \frac{4\pi}{7] + \sin \frac{6\pi}{7})^2)</cmath>
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2023|num-b=7|num-a=9|n=II}}
 
{{AIME box|year=2023|num-b=7|num-a=9|n=II}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:21, 16 February 2023

Solution 1

For any $k\in Z$, we have, \begin{align*} & \left( \omega^{3k} + \omega^k + 1 \right) \left( \omega^{3\left( 7 - k \right)} + \omega^{\left( 7 - k \right)} + 1 \right) \\ & = \omega^{3 \cdot 7} + \omega^{2k + 7} + \omega^{3k} + \omega^{-2k + 3 \cdot 7} + \omega^7 + \omega^k + \omega^{3\left( 7 - k \right)} + \omega^{\left( 7 - k \right)} + 1 \\ & = 1 + \omega^{2k} + \omega^{3k} + \omega^{-2k} + 1 + \omega^k + \omega^{-3k} + \omega^{-k} + 1 \\ & = 2 + \omega^{-3k} \sum_{j=0}^6 \omega^{j k} \\ & = 2 + \omega^{-3k} \frac{1 - \omega^{7 k}}{1 - \omega^k} \\ & = 2 . \end{align*} The second and the fifth equalities follow from the property that $\omega^7 = 1$.

Therefore, \begin{align*} \Pi_{k=0}^6 \left( \omega^{3k} + \omega^k + 1 \right) & = \left( \omega^{3 \cdot 0} + \omega^0 + 1 \right) \Pi_{k=1}^3 \left( \omega^{3k} + \omega^k + 1 \right) \left( \omega^{3\left( 7 - k \right)} + \omega^{\left( 7 - k \right)} + 1 \right) \\ & = 3 \cdot 2^3 \\ & = \boxed{\textbf{(024) }}. \end{align*}

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Solution 2 (Moduli)

Because the answer must be a positive integer, it is just equal to the modulus of the product. Define $z_n = \left(\textrm{cis }\frac{2n\pi}{7}\right)^3 + \textrm{cis }\frac{2n\pi}{7} + 1$.

Then, our product is equal to

\[z_0z_1z_2z_3z_4z_5z_6.\]

$z_0 = 0$, and we may observe that $z_x$ and $z_{7-x}$ are conjugates for any $x$, meaning that their magnitudes are the same. Thus, our product is

\[3z_1^2z_2^2z_3^2\]

\[= 3((\cos \frac{6\pi}{7} + \cos \frac{2\pi}{7} + 1)^2 + (\sin \frac{6\pi}{7] + \sin \frac{2\pi}{7})^2)((\cos \frac{12\pi}{7} + \cos \frac{4\pi}{7} + 1)^2\] (Error compiling LaTeX. Unknown error_msg)
\[+ (\sin \frac{12\pi}{7] + \sin \frac{4\pi}{7})^2)((\cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} + 1)^2 + (\sin \frac{4\pi}{7] + \sin \frac{6\pi}{7})^2)\] (Error compiling LaTeX. Unknown error_msg)

See also

2023 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png