Difference between revisions of "1985 AJHSME Problem 1"

m (Solution)
m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
<math>\frac{3\times 5}{9\times 11}\times \frac{7\times 9\times 11}{3\times 5\times 7}=</math>
+
<math>\frac{3times 5}{9\times 11}\times \frac{7\times 9\times 11}{3\times 5\times 7}=</math>
  
 
<cmath>\text{(A)}\ 1 \qquad \text{(B)}\ 0 \qquad \text{(C)}\ 49 \qquad \text{(D)} \frac{1}{49}\ \qquad \text{(E)}\ 50</cmath>
 
<cmath>\text{(A)}\ 1 \qquad \text{(B)}\ 0 \qquad \text{(C)}\ 49 \qquad \text{(D)} \frac{1}{49}\ \qquad \text{(E)}\ 50</cmath>

Revision as of 13:57, 19 February 2023

Problem

$\frac{3times 5}{9\times 11}\times \frac{7\times 9\times 11}{3\times 5\times 7}=$

\[\text{(A)}\ 1 \qquad \text{(B)}\ 0 \qquad \text{(C)}\ 49 \qquad \text{(D)} \frac{1}{49}\ \qquad \text{(E)}\ 50\]

Solution

$\frac{3\times 5}{9\times 11}\times \frac{7\times 9\times 11}{3\times 5\times 7}= \frac{3 \times 5 \times 7 \times 9 \times 11}{9 \times 11 \times 3 \times 5 \times 7} = \boxed{1}$

The answer is $\text{(A) 1}.$


Solution

the numeretor is 3*5*7*9*11, so is the denominator so (3*5*7*9*11)/(3*5*7*9*11)=1


-mathmax12

Video Solution

https://youtu.be/dszCk0HVWH8

~savannahsolver

See Also

1985 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 0
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png