Difference between revisions of "Van Aubel's Theorem"
(→Proof 1: Complex Numbers) |
(→Proof 1: Complex Numbers) |
||
Line 61: | Line 61: | ||
\end{eqnarray*}</cmath> | \end{eqnarray*}</cmath> | ||
− | Finally, we have <math>(p-r) = i(q-s) = e^{i \pi/2}(q- | + | Finally, we have <math>(p-r) = i(q-s) = e^{i \pi/2}(q-s)</math>, which implies <math>PR = QS</math> and <math>PR \perp QS</math>, as desired. |
==See Also== | ==See Also== | ||
[[Category:Theorems]] | [[Category:Theorems]] |
Latest revision as of 13:01, 4 March 2023
Theorem
On each side of quadrilateral , construct an external square and its center: , , , ; yielding centers . Van Aubel's Theorem states that the two line segments connecting opposite centers are perpendicular and equal length: , and .
Proofs
Proof 1: Complex Numbers
Putting the diagram on the complex plane, let any point be represented by the complex number . Note that and that , and similarly for the other sides of the quadrilateral. Then we have
From this, we find that Similarly,
Finally, we have , which implies and , as desired.