Difference between revisions of "Radon's Inequality"
(→Proof) |
|||
Line 9: | Line 9: | ||
Just apply Hölder for: | Just apply Hölder for: | ||
− | <cmath>(b_1 + b_2 + \cdots+ b_n )^{p/(p+1)}\left(\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p }\right)^{1/(p+1)} \geq a_1 + a_2 + \cdots+ a_n \Leftrightarrow </cmath> | + | <cmath>(b_1 + b_2 + \cdots+ b_n )^{p/(p+1)}\left(\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p }\right)^{1/(p+1)} \geq a_1 + a_2 + \cdots+ a_n \Leftrightarrow</cmath> |
+ | <cmath> \frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+1} } { (b_1 + b_2 + \cdots+ b_n )^p} </cmath> |
Revision as of 15:19, 14 March 2023
Radon's Inequality states:
It is a direct consequence of Hölder's Inequality, and a generalization of Titu's Lemma.
Proof
Just apply Hölder for: