Difference between revisions of "2023 USAMO Problems/Problem 2"
(Created page with "## Problem 2 Let <math>\mathbb{R}^{+}</math> be the set of positive real numbers. Find all functions <math>f:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}</math> such that, for all...") |
(Fixing up formatting, making sure everything looks as it should. Sorry for the previous edit, it's my first time editing on this wiki :p.) |
||
Line 1: | Line 1: | ||
− | + | == Problem 2 == | |
Let <math>\mathbb{R}^{+}</math> be the set of positive real numbers. Find all functions <math>f:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}</math> such that, for all <math>x, y \in \mathbb{R}^{+}</math>,<cmath>f(xy + f(x)) = xf(y) + 2</cmath> | Let <math>\mathbb{R}^{+}</math> be the set of positive real numbers. Find all functions <math>f:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}</math> such that, for all <math>x, y \in \mathbb{R}^{+}</math>,<cmath>f(xy + f(x)) = xf(y) + 2</cmath> | ||
− | + | == Solution == | |
First, let us plug in some special points; specifically, plugging in <math>x=0</math> and <math>x=1</math>, respectively: | First, let us plug in some special points; specifically, plugging in <math>x=0</math> and <math>x=1</math>, respectively: | ||
− | \begin{align} | + | <cmath> |
+ | \begin{align*} | ||
f(f(0)) &= 2 \\ | f(f(0)) &= 2 \\ | ||
f(y + f(1)) &= f(y) + 2 | f(y + f(1)) &= f(y) + 2 | ||
− | \end{align} | + | \end{align*} |
+ | </cmath> | ||
Next, let us find the first and second derivatives of this function. First, with (2), we isolate <math>f(y)</math> one one side | Next, let us find the first and second derivatives of this function. First, with (2), we isolate <math>f(y)</math> one one side | ||
+ | <cmath> | ||
\begin{align*} | \begin{align*} | ||
f(y) = f(y + f(1)) - 2 | f(y) = f(y + f(1)) - 2 | ||
\end{align*} | \end{align*} | ||
+ | </cmath> | ||
and then take the derivative: | and then take the derivative: | ||
+ | <cmath> | ||
\begin{align*} | \begin{align*} | ||
− | \ | + | \dfrac{\mathrm{d}f}{\mathrm{d}y} |
− | &= \ | + | &=\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f(y + f(1)) - 2\right] \\ |
− | &= \ | + | &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f(y + f(1))\right] - \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[2\right] \\ |
− | &= f'(y + f(1))\cdot\ | + | &= f'(y + f(1))\cdot\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[y + f(1)\right] \\ |
&= f'(y + f(1))\cdot(1)\\ | &= f'(y + f(1))\cdot(1)\\ | ||
f'(y) &= f'(y + f(1))\\ | f'(y) &= f'(y + f(1))\\ | ||
\end{align*} | \end{align*} | ||
+ | </cmath> | ||
The second derivative is as follows: | The second derivative is as follows: | ||
+ | <cmath> | ||
\begin{align*} | \begin{align*} | ||
− | \ | + | \dfrac{\mathrm{d}^2f}{\mathrm{d}y^2} |
− | &= \ | + | &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[\dfrac{\mathrm{d}f}{\mathrm{d}y}\right] \\ |
− | &= \ | + | &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f'(y + f(1))\right] \\ |
− | &= f''(y + f(1))\cdot\ | + | &= f''(y + f(1))\cdot\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[y + f(1)\right] \\ |
f''(y) &= f''(y + f(1))\\ | f''(y) &= f''(y + f(1))\\ | ||
\end{align*} | \end{align*} | ||
+ | </cmath> | ||
For both of these derivatives, we see that the input to the function does not matter: it will return the same result regardless of input. Therefore, the functions <math>f'</math> and <math>f''</math> must be constants, and <math>f</math> must be a linear equation. That means we can model <math>f(x)</math> like so: | For both of these derivatives, we see that the input to the function does not matter: it will return the same result regardless of input. Therefore, the functions <math>f'</math> and <math>f''</math> must be constants, and <math>f</math> must be a linear equation. That means we can model <math>f(x)</math> like so: | ||
+ | <cmath> | ||
\begin{align} | \begin{align} | ||
f(x) = ax + b | f(x) = ax + b | ||
\end{align} | \end{align} | ||
+ | </cmath> | ||
Via (1), we get the following: | Via (1), we get the following: | ||
+ | <cmath> | ||
\begin{align*} | \begin{align*} | ||
f(f(0)) &= 2 \\ | f(f(0)) &= 2 \\ | ||
Line 50: | Line 61: | ||
ab + b &= 2 | ab + b &= 2 | ||
\end{align*} | \end{align*} | ||
+ | </cmath> | ||
And via (2), | And via (2), | ||
+ | <cmath> | ||
\begin{align*} | \begin{align*} | ||
f(y + f(1)) &= f(y) + 2 \\ | f(y + f(1)) &= f(y) + 2 \\ | ||
Line 59: | Line 72: | ||
a^2 + ab &= 2 \\ | a^2 + ab &= 2 \\ | ||
\end{align*} | \end{align*} | ||
+ | </cmath> | ||
Setting these equations equal to each other, | Setting these equations equal to each other, | ||
+ | <cmath> | ||
\begin{align*} | \begin{align*} | ||
ab + b &= a^2 + ab \\ | ab + b &= a^2 + ab \\ | ||
b &= a^2 \\ | b &= a^2 \\ | ||
\end{align*} | \end{align*} | ||
+ | </cmath> | ||
Therefore, | Therefore, | ||
+ | <cmath> | ||
\begin{align*} | \begin{align*} | ||
ab + b &= 2 \\ | ab + b &= 2 \\ | ||
a^3 + a^2 &= 2 \\ | a^3 + a^2 &= 2 \\ | ||
\end{align*} | \end{align*} | ||
+ | </cmath> | ||
There are three solutions to this equation: <math>a = 1</math>, <math>a = -1 + i</math>, and <math>a = -1 - i</math>. Knowing that <math>b = a^2</math>, the respective <math>b</math> values are <math>b = 1</math>, <math>b = -2i</math>, and <math>b = 2i</math>. Thus, <math>f(x)</math> could be the following: | There are three solutions to this equation: <math>a = 1</math>, <math>a = -1 + i</math>, and <math>a = -1 - i</math>. Knowing that <math>b = a^2</math>, the respective <math>b</math> values are <math>b = 1</math>, <math>b = -2i</math>, and <math>b = 2i</math>. Thus, <math>f(x)</math> could be the following: | ||
+ | <cmath> | ||
\begin{align*} | \begin{align*} | ||
f(x) &= x + 1 \\ | f(x) &= x + 1 \\ | ||
Line 81: | Line 100: | ||
f(x) &= x(-1 - i) + 2i \\ | f(x) &= x(-1 - i) + 2i \\ | ||
\end{align*} | \end{align*} | ||
+ | </cmath> | ||
<math>\square</math> | <math>\square</math> | ||
+ | |||
+ | ~ cogsandsquigs |
Revision as of 10:21, 7 April 2023
Problem 2
Let be the set of positive real numbers. Find all functions such that, for all ,
Solution
First, let us plug in some special points; specifically, plugging in and , respectively:
Next, let us find the first and second derivatives of this function. First, with (2), we isolate one one side
and then take the derivative:
The second derivative is as follows:
For both of these derivatives, we see that the input to the function does not matter: it will return the same result regardless of input. Therefore, the functions and must be constants, and must be a linear equation. That means we can model like so:
Via (1), we get the following:
And via (2),
Setting these equations equal to each other,
Therefore,
There are three solutions to this equation: , , and . Knowing that , the respective values are , , and . Thus, could be the following:
~ cogsandsquigs