Difference between revisions of "2023 USAMO Problems/Problem 1"
Martin2001 (talk | contribs) (→Solution 1) |
Martin2001 (talk | contribs) (→Solution 1) |
||
Line 1: | Line 1: | ||
In an acute triangle <math>ABC</math>, let <math>M</math> be the midpoint of <math>\overline{BC}</math>. Let <math>P</math> be the foot of the perpendicular from <math>C</math> to <math>AM</math>. Suppose that the circumcircle of triangle <math>ABP</math> intersects line <math>BC</math> at two distinct points <math>B</math> and <math>Q</math>. Let <math>N</math> be the midpoint of <math>\overline{AQ}</math>. Prove that <math>NB=NC</math>. | In an acute triangle <math>ABC</math>, let <math>M</math> be the midpoint of <math>\overline{BC}</math>. Let <math>P</math> be the foot of the perpendicular from <math>C</math> to <math>AM</math>. Suppose that the circumcircle of triangle <math>ABP</math> intersects line <math>BC</math> at two distinct points <math>B</math> and <math>Q</math>. Let <math>N</math> be the midpoint of <math>\overline{AQ}</math>. Prove that <math>NB=NC</math>. | ||
== Solution 1 == | == Solution 1 == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Let <math>X</math> be the foot from <math>A</math> to <math>\overline{BC}</math>. By definition, <math>\angle AXM = \angle MPC = 90^{\circ}</math>. Thus, <math>\triangle AXM \sim \triangle MPC</math>, and <math>\triangle BMP \sim \triangle AMQ</math>. | Let <math>X</math> be the foot from <math>A</math> to <math>\overline{BC}</math>. By definition, <math>\angle AXM = \angle MPC = 90^{\circ}</math>. Thus, <math>\triangle AXM \sim \triangle MPC</math>, and <math>\triangle BMP \sim \triangle AMQ</math>. | ||
Revision as of 14:27, 13 April 2023
In an acute triangle , let be the midpoint of . Let be the foot of the perpendicular from to . Suppose that the circumcircle of triangle intersects line at two distinct points and . Let be the midpoint of . Prove that .
Solution 1
Let be the foot from to . By definition, . Thus, , and .
From this, we have , as . Thus, is also the midpoint of .
Now, iff lies on the perpendicular bisector of . As lies on the perpendicular bisector of , which is also the perpendicular bisector of (as is also the midpoint of ), we are done. ~ Martin2001, ApraTrip