|
|
Line 1: |
Line 1: |
| == Problem 2 == | | == Problem 2 == |
| Let <math>\mathbb{R}^{+}</math> be the set of positive real numbers. Find all functions <math>f:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}</math> such that, for all <math>x, y \in \mathbb{R}^{+}</math>,<cmath>f(xy + f(x)) = xf(y) + 2</cmath> | | Let <math>\mathbb{R}^{+}</math> be the set of positive real numbers. Find all functions <math>f:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}</math> such that, for all <math>x, y \in \mathbb{R}^{+}</math>,<cmath>f(xy + f(x)) = xf(y) + 2</cmath> |
− |
| |
− | == Solution 1 ==
| |
− | First, let us plug in some special points; specifically, plugging in <math>x=0</math> and <math>x=1</math>, respectively:
| |
− |
| |
− | <cmath>
| |
− | \begin{align}
| |
− | f(f(0)) &= 2 \\
| |
− | f(y + f(1)) &= f(y) + 2
| |
− | \end{align}
| |
− | </cmath>
| |
− |
| |
− | Next, let us find the derivative of this function. First, with (2), we isolate <math>f(y)</math> one one side
| |
− |
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | f(y) = f(y + f(1)) - 2
| |
− | \end{align*}
| |
− | </cmath>
| |
− |
| |
− | and then take the derivative:
| |
− |
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | \dfrac{\mathrm{d}f}{\mathrm{d}y}
| |
− | &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f(y + f(1)) - 2\right] \\
| |
− | &= \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[f(y + f(1))\right] - \dfrac{\mathrm{d}f}{\mathrm{d}y}\left[2\right] \\
| |
− | &= f'(y + f(1))\cdot\dfrac{\mathrm{d}f}{\mathrm{d}y}\left[y + f(1)\right] \\
| |
− | &= f'(y + f(1))\cdot(1)\\
| |
− | f'(y) &= f'(y + f(1))\\
| |
− | \end{align*}
| |
− | </cmath>
| |
− |
| |
− | With the derivative, we see that the input to the function does not matter: it will return the same result regardless of input, assuming that <math>f(1) \neq 0</math>. We know it is not zero because if it was, then (2) would become <math>f(y) = f(y) + 2</math>, implying that <math>0 = 2</math>, which is not true.
| |
− |
| |
− | Therefore, the function <math>f'</math> must be a constant, and <math>f</math> must be a linear equation or a constant. We know it is not a constant because if it was, the problem could be reduced to the following:
| |
− |
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | f(xy + f(x)) &= xf(y) + 2 \\
| |
− | f &= xf + 2 \\
| |
− | f - xf &= 2 \\
| |
− | f(1-x) &= 2 \\
| |
− | f &= \dfrac{2}{1-x} \\
| |
− | \end{align*}
| |
− | </cmath>
| |
− |
| |
− | where <math>f</math> is the constant from <math>f(x)</math>. As we see, <math>f</math> would depend on <math>x</math>, making it not a constant function. Thus, <math>f(x)</math> must be linear, meaning we can model it like so:
| |
− |
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | f(x) = ax + b
| |
− | \end{align*}
| |
− | </cmath>
| |
− |
| |
− | Via (1), we get the following:
| |
− |
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | f(f(0)) &= 2 \\
| |
− | a(a(0) + b) + b &= 2 \\
| |
− | ab + b &= 2
| |
− | \end{align*}
| |
− | </cmath>
| |
− |
| |
− | And via (2),
| |
− |
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | f(y + f(1)) &= f(y) + 2 \\
| |
− | a(y + a(1) + b) + b &= ay + b + 2 \\
| |
− | ay + a^2 + ab + b &= ay + b + 2 \\
| |
− | a^2 + ab &= 2 \\
| |
− | \end{align*}
| |
− | </cmath>
| |
− |
| |
− | Setting these equations equal to each other,
| |
− |
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | ab + b &= a^2 + ab \\
| |
− | b &= a^2 \\
| |
− | \end{align*}
| |
− | </cmath>
| |
− |
| |
− | Therefore,
| |
− |
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | ab + b &= 2 \\
| |
− | a^3 + a^2 &= 2 \\
| |
− | \end{align*}
| |
− | </cmath>
| |
− |
| |
− | There are three solutions to this equation: <math>a = 1</math>, <math>a = -1 + i</math>, and <math>a = -1 - i</math>. Knowing that <math>b = a^2</math>, the respective <math>b</math> values are <math>b = 1</math>, <math>b = -2i</math>, and <math>b = 2i</math>. Thus, <math>f(x)</math> could be the following:
| |
− |
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | f(x) &= x + 1 \\
| |
− | f(x) &= x(-1 + i) - 2i \\
| |
− | f(x) &= x(-1 - i) + 2i \\
| |
− | \end{align*}
| |
− | </cmath>
| |
− |
| |
− | Because only the first function maps strictly to positive real numbers, the only solution that works is <math>f(x) = x + 1</math>. <math>\square</math>
| |
− |
| |
− | ~cogsandsquigs
| |
− |
| |
− | This solution is heavily flawed:
| |
− |
| |
− | 1. <math>f(0)</math> doesn't exist.
| |
− |
| |
− | 2. The function isn't necessarily continuous, let alone differentiable.
| |
− |
| |
− | 3. Even if it was differentiable, the equation
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | f'(y) &= f'(y + f(1))\\
| |
− | \end{align*}
| |
− | </cmath>
| |
− | doesn't necessarily mean the derivative is constant either. It only implies the derivative is periodic with period <math>f(1)</math>
| |
− |
| |
− | spencerD.
| |
| | | |
| == Solution 2 == | | == Solution 2 == |