Difference between revisions of "2023 IMO Problems/Problem 4"
(Created page with "==Problem 4== Let <math>x_1, x_2, \cdots , x_{2023}</math> be pairwise different positive real numbers such that <cmath>a_n = \sqrt{(x_1+x_2+···+x_n)(\frac1{x_1} + \frac1{x...") |
m (→Problem 4) |
||
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
Let <math>x_1, x_2, \cdots , x_{2023}</math> be pairwise different positive real numbers such that | Let <math>x_1, x_2, \cdots , x_{2023}</math> be pairwise different positive real numbers such that | ||
<cmath>a_n = \sqrt{(x_1+x_2+···+x_n)(\frac1{x_1} + \frac1{x_2} +···+\frac1{x_n})}</cmath> | <cmath>a_n = \sqrt{(x_1+x_2+···+x_n)(\frac1{x_1} + \frac1{x_2} +···+\frac1{x_n})}</cmath> | ||
is an integer for every <math>n = 1,2,\cdots,2023</math>. Prove that <math>a_{2023} \ge 3034</math>. | is an integer for every <math>n = 1,2,\cdots,2023</math>. Prove that <math>a_{2023} \ge 3034</math>. | ||
+ | |||
+ | ==Solution== |
Revision as of 21:37, 13 July 2023
Problem
Let be pairwise different positive real numbers such that is an integer for every . Prove that .