Difference between revisions of "2023 USAMO Problems/Problem 6"
(→Solution 1) |
m (→Solution 1) |
||
Line 52: | Line 52: | ||
Consider points <math>G,H,J,K,P,</math> and <math>Q</math> such that the intersections of the circumcircle of <math>\triangle{}ABC</math> with the circumcircle of <math>\triangle{}DII_A</math> are <math>D</math> and <math>G</math>, the intersections of the circumcircle of <math>\triangle{}ABC</math> with the circumcircle of <math>\triangle{}DI_BI_C</math> are <math>D</math> and <math>H</math>, the intersections of the circumcircle of <math>\triangle{}ABC</math> with line <math>\overline{II_A}</math> are <math>A</math> and <math>J</math>, the intersections of the circumcircle of <math>\triangle{}ABC</math> with line <math>\overline{I_BI_C}</math> are <math>A</math> and <math>K</math>, the intersection of lines <math>\overline{II_A}</math> and <math>\overline{BC}</math> is <math>P</math>, and the intersection of lines <math>\overline{I_BI_C}</math> and <math>\overline{BC}</math> is <math>Q</math>. | Consider points <math>G,H,J,K,P,</math> and <math>Q</math> such that the intersections of the circumcircle of <math>\triangle{}ABC</math> with the circumcircle of <math>\triangle{}DII_A</math> are <math>D</math> and <math>G</math>, the intersections of the circumcircle of <math>\triangle{}ABC</math> with the circumcircle of <math>\triangle{}DI_BI_C</math> are <math>D</math> and <math>H</math>, the intersections of the circumcircle of <math>\triangle{}ABC</math> with line <math>\overline{II_A}</math> are <math>A</math> and <math>J</math>, the intersections of the circumcircle of <math>\triangle{}ABC</math> with line <math>\overline{I_BI_C}</math> are <math>A</math> and <math>K</math>, the intersection of lines <math>\overline{II_A}</math> and <math>\overline{BC}</math> is <math>P</math>, and the intersection of lines <math>\overline{I_BI_C}</math> and <math>\overline{BC}</math> is <math>Q</math>. | ||
− | Since <math>IBI_AC</math> is cyclic, the pairwise radical axes of the circumcircles of <math>\triangle{}DII_A,\triangle{}ABC,</math> and <math>IBI_AC</math> concur. The pairwise radical axes of these circles are <math>\overline{GD},\overline{II_A},</math> and <math>\overline{BC}</math>, so <math>G,P,</math> and <math>D</math> are collinear. Similarly, since <math>BCI_BI_C</math> is cyclic, the pairwise radical axes of the cirucmcircles of <math>\triangle{}DI_BI_C,\triangle{}ABC,</math> and <math>BCI_BI_C</math> concur. The pairwise radical axes of these circles are <math>\overline{HD},\overline{I_BI_C},</math> and <math>\overline{BC}</math>, so <math>H,Q,</math> and <math>D</math> are collinear. This means that <math>-1=(Q,P;B,C)\stackrel{D}{=}(H,G;B,C)</math>, so the tangents to the circumcircle of <math>\triangle{}ABC</math> at <math>G</math> and <math>H</math> intersect on <math>\overline{BC}</math>. Let this intersection be <math>X</math>. Also, let the intersection of the tangents to the circumcircle of <math>\triangle{}ABC</math> at <math>K</math> and <math>J</math> be a point at infinity on <math>\overline{BC}</math> called <math>Y</math> and let the intersection of lines <math>\overline{KG}</math> and <math>\overline{}HJ</math> be <math>Z</math>. Then, let the intersection of lines <math>\overline{GJ}</math> and <math>\overline{HK}</math> be <math>E'</math>. By Pascal's Theorem on <math>GGJHHK</math> and <math>GJJHKK</math>, we get that <math>X,E',</math> and <math>Z</math> are collinear and that <math>E',Y,</math> and <math>Z</math> are collinear, so <math>E',X,</math> and <math>Y</math> are collinear, meaning that <math>E</math> lies on <math>\overline{BC}</math> since both <math>X</math> and <math>Y</math> lie on <math>\overline{BC}</math>. | + | Since <math>IBI_AC</math> is cyclic, the pairwise radical axes of the circumcircles of <math>\triangle{}DII_A,\triangle{}ABC,</math> and <math>IBI_AC</math> concur. The pairwise radical axes of these circles are <math>\overline{GD},\overline{II_A},</math> and <math>\overline{BC}</math>, so <math>G,P,</math> and <math>D</math> are collinear. Similarly, since <math>BCI_BI_C</math> is cyclic, the pairwise radical axes of the cirucmcircles of <math>\triangle{}DI_BI_C,\triangle{}ABC,</math> and <math>BCI_BI_C</math> concur. The pairwise radical axes of these circles are <math>\overline{HD},\overline{I_BI_C},</math> and <math>\overline{BC}</math>, so <math>H,Q,</math> and <math>D</math> are collinear. This means that <math>-1=(Q,P;B,C)\stackrel{D}{=}(H,G;B,C)</math>, so the tangents to the circumcircle of <math>\triangle{}ABC</math> at <math>G</math> and <math>H</math> intersect on <math>\overline{BC}</math>. Let this intersection be <math>X</math>. Also, let the intersection of the tangents to the circumcircle of <math>\triangle{}ABC</math> at <math>K</math> and <math>J</math> be a point at infinity on <math>\overline{BC}</math> called <math>Y</math> and let the intersection of lines <math>\overline{KG}</math> and <math>\overline{}HJ</math> be <math>Z</math>. Then, let the intersection of lines <math>\overline{GJ}</math> and <math>\overline{HK}</math> be <math>E'</math>. By Pascal's Theorem on <math>GGJHHK</math> and <math>GJJHKK</math>, we get that <math>X,E',</math> and <math>Z</math> are collinear and that <math>E',Y,</math> and <math>Z</math> are collinear, so <math>E',X,</math> and <math>Y</math> are collinear, meaning that <math>E'</math> lies on <math>\overline{BC}</math> since both <math>X</math> and <math>Y</math> lie on <math>\overline{BC}</math>. |
<asy> | <asy> |
Revision as of 18:37, 22 September 2023
Problem
Let ABC be a triangle with incenter and excenters , , opposite , , and , respectively. Given an arbitrary point on the circumcircle of that does not lie on any of the lines , , or , suppose the circumcircles of and intersect at two distinct points and . If is the intersection of lines and , prove that .
Solution 1
Consider points and such that the intersections of the circumcircle of with the circumcircle of are and , the intersections of the circumcircle of with the circumcircle of are and , the intersections of the circumcircle of with line are and , the intersections of the circumcircle of with line are and , the intersection of lines and is , and the intersection of lines and is .
Since is cyclic, the pairwise radical axes of the circumcircles of and concur. The pairwise radical axes of these circles are and , so and are collinear. Similarly, since is cyclic, the pairwise radical axes of the cirucmcircles of and concur. The pairwise radical axes of these circles are and , so and are collinear. This means that , so the tangents to the circumcircle of at and intersect on . Let this intersection be . Also, let the intersection of the tangents to the circumcircle of at and be a point at infinity on called and let the intersection of lines and be . Then, let the intersection of lines and be . By Pascal's Theorem on and , we get that and are collinear and that and are collinear, so and are collinear, meaning that lies on since both and lie on .
Consider the transformation which is the composition of an inversion centered at and a reflection over the angle bisector of that sends to and to . We claim that this sends to and to . It is sufficient to prove that if the transformation sends to , then is cyclic. Notice that since and . Therefore, we get that , so is cyclic, proving the claim. This means that .
We claim that . Construct to be the intersection of line and the circumcircle of and let and be the intersections of lines and with the circumcircle of . Since and are the reflections of and over , it is sufficient to prove that are concyclic. Since and concur and and are concyclic, we have that are concyclic, so , so are concyclic, proving the claim. We can similarly get that .
Let line intersect the circumcircle of at and . Notice that is the midpoint of and , so is a parallelogram with center , so . Similarly, we get that if line intersects the circumcircle of at and , we have that , so , so , so are concyclic. Then, the pairwise radical axes of the circumcircles of and are and , so and concur, so and concur, so . We are then done since .
~Zhaom
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.