Difference between revisions of "2019 AMC 12B Problems/Problem 3"

 
Line 16: Line 16:
  
 
~Dodgers66
 
~Dodgers66
 +
 +
 +
==Solution 2==
 +
 +
Notice that the transformation is obtained by reflecting points across the origin. Only <math>B</math> and <math>C</math> involve the origin, and since obviously reflection across the origin is <math>180^\circ</math>, the answer is <math>\boxed{(\text{E})}</math>.
 +
 +
~Technodoggo
  
 
==Video Solution 1==
 
==Video Solution 1==

Latest revision as of 01:55, 24 October 2023

Problem

Which of the following rigid transformations (isometries) maps the line segment $\overline{AB}$ onto the line segment $\overline{A'B'}$ so that the image of $A(-2, 1)$ is $A'(2, -1)$ and the image of $B(-1, 4)$ is $B'(1, -4)$?

$\textbf{(A) }$ reflection in the $y$-axis

$\textbf{(B) }$ counterclockwise rotation around the origin by $90^{\circ}$

$\textbf{(C) }$ translation by 3 units to the right and 5 units down

$\textbf{(D) }$ reflection in the $x$-axis

$\textbf{(E) }$ clockwise rotation about the origin by $180^{\circ}$

Solution

We can simply graph the points, or use coordinate geometry, to realize that both $A'$ and $B'$ are, respectively, obtained by rotating $A$ and $B$ by $180^{\circ}$ about the origin. Hence the rotation by $180^{\circ}$ about the origin maps the line segment $\overline{AB}$ to the line segment $\overline{A'B'}$, so the answer is $\boxed{(\text{E})}$.

~Dodgers66


Solution 2

Notice that the transformation is obtained by reflecting points across the origin. Only $B$ and $C$ involve the origin, and since obviously reflection across the origin is $180^\circ$, the answer is $\boxed{(\text{E})}$.

~Technodoggo

Video Solution 1

https://youtu.be/b-htQISQ7Oo

~Education, the Study of Everything

See Also

2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png