Difference between revisions of "AoPS Wiki:Article of the Day"

(probably shouldn't substitute)
(should be short)
Line 4: Line 4:
 
|-  
 
|-  
 
| style='border:1px solid black;padding:10px;' |
 
| style='border:1px solid black;padding:10px;' |
Today's featured article is [[set]].
+
Today's featured article is:
  
<blockquote class="toccolours" style="float:none; padding: 10px 15px 10px 15px; display:table; background:lime;">  
+
<blockquote class="toccolours" style="float:none; padding: 10px 15px 10px 15px; display:table; background:lime;"> The notion of a '''set''' is one of the fundamental notions in mathematics that is difficult to precisely define. Of course, we have plenty of synonyms for the word "set," like collection, ensemble, group, etc., but those names really do not define the meaning of the word set; all they can do is replace it in various sentences. So, instead of defining what sets are, one has to define what can be done with them or, in other words, what axioms the sets satisfy. These axioms are chosen to agree with our intuitive concept of a set, on one hand, and to allow various, sometimes quite sophisticated, mathematical constructions on the other hand. For the full collection... ([[set|more]])
{{:set}}
 
 
</blockquote>
 
</blockquote>
 
|}
 
|}

Revision as of 15:28, 24 November 2007

Temperal

Today's featured article is:

The notion of a set is one of the fundamental notions in mathematics that is difficult to precisely define. Of course, we have plenty of synonyms for the word "set," like collection, ensemble, group, etc., but those names really do not define the meaning of the word set; all they can do is replace it in various sentences. So, instead of defining what sets are, one has to define what can be done with them or, in other words, what axioms the sets satisfy. These axioms are chosen to agree with our intuitive concept of a set, on one hand, and to allow various, sometimes quite sophisticated, mathematical constructions on the other hand. For the full collection... (more)