Difference between revisions of "2023 AMC 10A Problems/Problem 22"

Line 5: Line 5:
 
==Solution==
 
==Solution==
 
Connect the centers of <math>C_1</math> and <math>C_4</math>, and the centers of <math>C_3</math> and <math>C_4</math>. Let the radius of <math>C_4</math> be <math>r</math>. Then, from the auxillary lines, we get <math>(\frac{1}{4})^2 + (\frac{3}{4}+r)^2 = (1-r)^2</math>. Solving, we get <math>r = \boxed{\frac{3}{28}}</math>
 
Connect the centers of <math>C_1</math> and <math>C_4</math>, and the centers of <math>C_3</math> and <math>C_4</math>. Let the radius of <math>C_4</math> be <math>r</math>. Then, from the auxillary lines, we get <math>(\frac{1}{4})^2 + (\frac{3}{4}+r)^2 = (1-r)^2</math>. Solving, we get <math>r = \boxed{\frac{3}{28}}</math>
 +
 +
-andliu766
  
  
 
== Video Solution 1 by OmegaLearn ==
 
== Video Solution 1 by OmegaLearn ==
 
https://youtu.be/jcHeJXs9Sdw
 
https://youtu.be/jcHeJXs9Sdw

Revision as of 17:24, 9 November 2023

Circle $C_1$ and $C_2$ each have radius $1$, and the distance between their centers is $\frac{1}{2}$. Circle $C_3$ is the largest circle internally tangent to both $C_1$ and $C_2$. Circle $C_4$ is internally tangent to both $C_1$ and $C_2$ and externally tangent to $C_3$. What is the radius of $C_4$?

$\textbf{(A) } \frac{1}{14} \qquad \textbf{(B) } \frac{1}{12} \qquad \textbf{(C) } \frac{1}{10} \qquad \textbf{(D) } \frac{3}{28} \qquad \textbf{(E) } \frac{1}{9}$

Solution

Connect the centers of $C_1$ and $C_4$, and the centers of $C_3$ and $C_4$. Let the radius of $C_4$ be $r$. Then, from the auxillary lines, we get $(\frac{1}{4})^2 + (\frac{3}{4}+r)^2 = (1-r)^2$. Solving, we get $r = \boxed{\frac{3}{28}}$

-andliu766


Video Solution 1 by OmegaLearn

https://youtu.be/jcHeJXs9Sdw