Difference between revisions of "2023 AMC 10B Problems/Problem 25"
Technodoggo (talk | contribs) |
|||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | A regular pentagon with area 1+\sqrt(5) is printed on paper and cut out. All five vertices are folded to the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon? | ||
+ | |||
+ | |||
+ | ==Solution 1== | ||
+ | |||
+ | <asy> | ||
+ | unitsize(5cm); | ||
+ | |||
+ | // Define the vertices of the pentagons | ||
+ | pair A, B, C, D, E; | ||
+ | pair F, G, H, I, J; | ||
+ | |||
+ | // Calculate the vertices of the larger pentagon | ||
+ | A = dir(90); | ||
+ | B = dir(90 - 72); | ||
+ | C = dir(90 - 2*72); | ||
+ | D = dir(90 - 3*72); | ||
+ | E = dir(90 - 4*72); | ||
+ | |||
+ | // Draw the larger pentagon | ||
+ | draw(A--B--C--D--E--cycle); | ||
+ | |||
+ | pair O = (A+B+C+D+E)/5; | ||
+ | pair AA,OO; | ||
+ | real gap = 0.02; | ||
+ | AA = A+(0,0); | ||
+ | OO = O+(0,0); | ||
+ | |||
+ | draw(AA--OO, blue); | ||
+ | |||
+ | pair OOO, OAO; | ||
+ | OOO = O+(gap,0); | ||
+ | OAO = (O+A)/2 + (gap,0); | ||
+ | |||
+ | draw(OOO--OAO,green); | ||
+ | dot(O); | ||
+ | dot((O+A)/2); | ||
+ | |||
+ | label("$r_b$", (O+A)*.7, E,blue); | ||
+ | label("$a_s$", (O+A)*.2 +(0+0.18,0.05), E,green); | ||
+ | label("$r_s$", O+(-0.175,0.2), E,pink); | ||
+ | |||
+ | |||
+ | real scaleFactor = 1/1.618; // Adjust this value as needed | ||
+ | // Rotate the smaller pentagon by 180 degrees | ||
+ | F = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 + 180); | ||
+ | G = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 72 + 180); | ||
+ | H = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 2*72 + 180); | ||
+ | I = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 3*72 + 180); | ||
+ | J = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 4*72 + 180); | ||
+ | |||
+ | // Draw the smaller pentagon | ||
+ | |||
+ | draw(F--G--H--I--J--cycle,red); | ||
+ | |||
+ | draw(arc(O,(H+I)*.5*.6,H*.6)); | ||
+ | label("$36^\circ$",O+(+0.05,0.15),NW); | ||
+ | draw(O--H,pink); | ||
+ | </asy> | ||
+ | |||
+ | Let <math>r_b</math> and <math>r_s</math> be the circumradius of the big and smaller pentagon. Let <math>a_s</math> be the apothem of the smaller pentagon. | ||
+ | |||
+ | From the diagram: | ||
+ | \cos{36^\circ} &= \dfrac{a_s}{r_s} = \dfrac{\phi}{2} = \dfrac{\sqrt{5}+1}{4}\\ | ||
+ | a_s &= \dfrac{r_b}{2}\\ | ||
+ | \text{Area of small pentagon} &= (\dfrac{r_s}{r_b})^2 \text{Area of big pentagon}\\ | ||
+ | &=(\dfrac{a_s}{\cos{36^\circ} r_b})^2 (1+\sqrt{5})\\ | ||
+ | &=(\dfrac{r_b}{\dfrac{\phi}{2} r_b})^2 (1+\sqrt{5})\\ | ||
+ | &=(\dfrac{1}{2 \dfrac{\phi}{2}})^2 (1+\sqrt{5})\\ | ||
+ | &=(\dfrac{2}{\sqrt{5}+1})^2 (1+\sqrt{5})\\ | ||
+ | &=\dfrac{4}{\sqrt{5}+1} \\ | ||
+ | &=\dfrac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} \\ | ||
+ | &=\sqrt{5}-1 | ||
+ | |||
+ | ~Technodoggo |
Revision as of 13:23, 15 November 2023
Problem
A regular pentagon with area 1+\sqrt(5) is printed on paper and cut out. All five vertices are folded to the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon?
Solution 1
Let and be the circumradius of the big and smaller pentagon. Let be the apothem of the smaller pentagon.
From the diagram:
\cos{36^\circ} &= \dfrac{a_s}{r_s} = \dfrac{\phi}{2} = \dfrac{\sqrt{5}+1}{4}\\ a_s &= \dfrac{r_b}{2}\\ \text{Area of small pentagon} &= (\dfrac{r_s}{r_b})^2 \text{Area of big pentagon}\\ &=(\dfrac{a_s}{\cos{36^\circ} r_b})^2 (1+\sqrt{5})\\ &=(\dfrac{r_b}{\dfrac{\phi}{2} r_b})^2 (1+\sqrt{5})\\ &=(\dfrac{1}{2 \dfrac{\phi}{2}})^2 (1+\sqrt{5})\\ &=(\dfrac{2}{\sqrt{5}+1})^2 (1+\sqrt{5})\\ &=\dfrac{4}{\sqrt{5}+1} \\ &=\dfrac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} \\ &=\sqrt{5}-1
~Technodoggo