Difference between revisions of "Squeeze Theorem"
(please check for inaccuracy, non-rigor, and grammar.) |
(latex issue fixed) |
||
Line 7: | Line 7: | ||
If <math>f(x)</math> is between <math>g(x)</math> and <math>h(x)</math> for all <math>x</math> in the neighborhood of <math>S</math>, then either <math>g(x)<f(x)<h(x)</math> or <math>h(x)<f(x)<g(x)</math> for all <math>x</math> in the neighborhood of <math>S</math>. The second case is basically the first case, so we just need to prove the first case. | If <math>f(x)</math> is between <math>g(x)</math> and <math>h(x)</math> for all <math>x</math> in the neighborhood of <math>S</math>, then either <math>g(x)<f(x)<h(x)</math> or <math>h(x)<f(x)<g(x)</math> for all <math>x</math> in the neighborhood of <math>S</math>. The second case is basically the first case, so we just need to prove the first case. | ||
− | If <math>g(x)</math> increases to <math>L</math>, then <math>f(x)</math> goes to either <math>L</math> or <math>M</math>, where <math>M>L</math>. If <math>h(x)</math> decreases to <math>L</math>, then <math>f(x)</math> goes to either <math>L</math> or <math>N</math>, where <math>N<L</math>. Since <math>f(x)</math> can't go to <math>M</math> or <math>N</math>, then <math>f(x)</math> must go to <math>L</math>. Therefore, <math>lim_{x\to S}f(x)=L</math>. | + | If <math>g(x)</math> increases to <math>L</math>, then <math>f(x)</math> goes to either <math>L</math> or <math>M</math>, where <math>M>L</math>. If <math>h(x)</math> decreases to <math>L</math>, then <math>f(x)</math> goes to either <math>L</math> or <math>N</math>, where <math>N<L</math>. Since <math>f(x)</math> can't go to <math>M</math> or <math>N</math>, then <math>f(x)</math> must go to <math>L</math>. Therefore, <math>\lim_{x\to S}f(x)=L</math>. |
+ | |||
==See Also== | ==See Also== | ||
*[[Limit]] | *[[Limit]] |
Revision as of 11:10, 1 December 2007
The Squeeze Play Theorem is a relatively simple theorem that deals with calculus, specifically limits.
Theorem
Suppose is between and for all in the neighborhood of . If and approach some common limit L as approaches , then .
Proof
If is between and for all in the neighborhood of , then either or for all in the neighborhood of . The second case is basically the first case, so we just need to prove the first case.
If increases to , then goes to either or , where . If decreases to , then goes to either or , where . Since can't go to or , then must go to . Therefore, .