Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 7"

(Created page with "==Problem == Let <math>P_n(x)=1+x+x^2+\cdots+x^n</math> and <math>Q_n(x)=P_1\cdot P_2\cdots P_n</math> for all integers <math>n\ge 1</math>. How many more distinct complex ro...")
 
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
{{Solution}}
+
 
 +
The solution of <math>P_n(x)</math> will be in the form <math>x=e^{\frac{2\pi k}{n+1}}</math> for <math>k=1,2,\cdots,n</math>
 +
 
 +
~Tomas Diaz. orders@tomasdiaz.com
 +
 
 +
{{alternate solutions}}

Revision as of 19:07, 26 November 2023

Problem

Let $P_n(x)=1+x+x^2+\cdots+x^n$ and $Q_n(x)=P_1\cdot P_2\cdots P_n$ for all integers $n\ge 1$. How many more distinct complex roots does $Q_{1004}$ have than $Q_{1003}$?

Solution

The solution of $P_n(x)$ will be in the form $x=e^{\frac{2\pi k}{n+1}}$ for $k=1,2,\cdots,n$

~Tomas Diaz. orders@tomasdiaz.com

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.