Difference between revisions of "2013 Canadian MO Problems/Problem 4"
Line 8: | Line 8: | ||
==Solution== | ==Solution== | ||
− | + | First thing to note on both functions is the following: | |
− | + | <math>f_j(1/r) =\min (\frac{j}{r}, n)+\min\left(jr, n\right)=f_j(1/r)</math>, | |
+ | and g_j(1/r) =\min (\lceil frac{j}{r}\rceil, n)+\min\left(\left\lceil\jr\right\rceil, n\right) = f_j(r)<math> | ||
+ | |||
+ | |||
+ | Case 1: </math>r=1<math> | ||
+ | |||
+ | Since </math>j \le n$ in the sum, the | ||
+ | f_j(r) =\min (jr, n)+\min\left(\frac{j}{r}, n\right) | ||
~Tomas Diaz. orders@tomasdiaz.com | ~Tomas Diaz. orders@tomasdiaz.com | ||
{{olution}} | {{olution}} |
Revision as of 16:32, 27 November 2023
Problem
Let be a positive integer. For any positive integer and positive real number , define where denotes the smallest integer greater than or equal to . Prove that for all positive real numbers .
Solution
First thing to note on both functions is the following:
,
and g_j(1/r) =\min (\lceil frac{j}{r}\rceil, n)+\min\left(\left\lceil\jr\right\rceil, n\right) = f_j(r)r=1j \le n$ in the sum, the f_j(r) =\min (jr, n)+\min\left(\frac{j}{r}, n\right)
~Tomas Diaz. orders@tomasdiaz.com Template:Olution